www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Extremstellen
Extremstellen < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:00 Mo 28.11.2005
Autor: splin

Zeige: Die Funktion f mit f [mm] (x)=ax^3+ bx^2+cx+d [/mm]   a [mm] \not=0, [/mm]
hat für  [mm] b^2>3ac [/mm] genau zwei relative Nullstellen.

Ich habe überhaupt kein Plan für diese Aufgabe, sonst hätte ich zuerst mit einem Vorschlag versucht.

Danke im voraus.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Extremstellen: Überschrift OK!
Status: (Antwort) fertig Status 
Datum: 22:45 Mo 28.11.2005
Autor: Zwerglein

Hi, Splin,

> Zeige: Die Funktion f mit f [mm](x)=ax^3+ bx^2+cx+d[/mm]   a [mm]\not=0,[/mm]
> hat für  [mm]b^2>3ac[/mm] genau zwei relative Nullstellen.

In der Überschrift steht's richtig: Extremstellen!
In der Frage hast Du Dich vertan: Um "Nullstellen" (relative???) geht's hier nicht!

Ganz einfach:
Ableiten,
Ableitung=0 setzen und Diskriminante betrachten:
Diese ergibt [mm] 4b^{2} [/mm] - 12ac.

Genau zwei rel.Extremstellen gibt's, wenn diese Diskriminante positiv ist.
Umformen, fertig!

mfG!
Zwerglein


Bezug
                
Bezug
Extremstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:34 Di 29.11.2005
Autor: splin

Zeige: Die Funktion f mit f [mm] (x)=ax^3+ bx^2+cx+d [/mm]   a [mm] \not=0, [/mm]
hat für  [mm] b^2>3ac [/mm] genau zwei relative Nullstellen.

Ich habe überhaupt kein Plan für diese Aufgabe, sonst hätte ich zuerst mit einem Vorschlag versucht.

Danke im voraus.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich verstehe nicht wie kommt man auf [mm] 4b^2 [/mm] - 12ac

Bezug
                        
Bezug
Extremstellen: Nullstellen der Ableitung
Status: (Antwort) fertig Status 
Datum: 19:45 Di 29.11.2005
Autor: Loddar

Hallo splin!


Die Aufgabenstellung kann nur heißen:

Zeige: Die Funktion f mit f [mm](x)=ax^3+ bx^2+cx+d[/mm]   a [mm]\not=0,[/mm]
hat für  [mm]b^2>3ac[/mm] genau zwei relative Nullstellen Extremstellen
.


Bilde doch mal von deser Funktion die Ableitung $f'(x)_$ und bestimme anschließend die Nullstellen der Ableitung (dann das sind schließlich nach dem notwendigen Kriterium die möglichen Extremstellen).

Für diese Nullstellen-Ermittlung kannst du die MBp/q-Formel oder auch MBABC-Formel verwenden.

Untersuche dann den Ausdruck unter der Wurzel.


Gruß
Loddar


Bezug
        
Bezug
Extremstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:38 Di 29.11.2005
Autor: splin

Ich verstehe nicht wie kommt man auf [mm] 4b^2 [/mm] - 12ac

Bezug
                
Bezug
Extremstellen: Diskriminante
Status: (Antwort) fertig Status 
Datum: 19:50 Di 29.11.2005
Autor: Loddar

Hallo splin!


Dieser Ausdruck entsteht unter der Wurzel bei der MBABC-Formel (auch Mitternachts-Formel genannt) oder auch durch Umstellen des Wurzelausdruckes bei der MBp/q-Formel .


Gruß
Loddar


Bezug
                
Bezug
Extremstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:28 Do 01.12.2005
Autor: Zwerglein

Hi, splin,

aber wie man ableitet, weißt Du?!

Beispiel: f(x) = [mm] x^{3} [/mm]  => f'(x) = [mm] 3x^{2} [/mm]

Daher in Deiner Aufgabe:

f'(x) = [mm] 3ax^{2} [/mm] + 2bx + c

Und das setzt Du nun =0.

[mm] 3ax^{2} [/mm] + 2bx + c = 0

Daraus:  [mm] x_{1/2} [/mm] = [mm] \bruch{-2b \pm \wurzel{(2b)^{2} - 4*(3a)*c}}{2*(3a)} [/mm]

Und
DAS, WAS UNTER DER WURZEL STEHT,
ist die DISKRIMINANTE,

die bei Deiner Aufgabe POSITIV (>0) sein muss!

Jetzt klar?

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de