www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Extremstellen
Extremstellen < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremstellen: Erklärung
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:00 Di 17.03.2009
Autor: Kawosiri

Aufgabe
[mm] f(x)=4x^3-6x^2-3x [/mm]

Hallo an alle,

ich komme bei dieser Funktion einfach nicht weiter und bin schon am Verzweifeln... Bekomme nicht mal die Nullstellen berechnet - muss immer "durch null teilen".
Kann mir jemand den kompletten Rechenweg aufzeigen?
Evtl. auch wie man mit Maximal-/Minimal-/Wende- und Sattelstellen weitermacht?
Dann hätte ich endlich mal ein Bsp. welches ich für weitere Übungsaufgaben "nehmen" kann...

Ganz lieben Dank im voraus!
Liebe Grüße

(Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.)


        
Bezug
Extremstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:14 Di 17.03.2009
Autor: XPatrickX


> [mm]f(x)=4x^3-6x^2-3x[/mm]
>  Hallo an alle,

Hallo!

>  
> ich komme bei dieser Funktion einfach nicht weiter und bin
> schon am Verzweifeln... Bekomme nicht mal die Nullstellen
> berechnet - muss immer "durch null teilen".
>  Kann mir jemand den kompletten Rechenweg aufzeigen?

Klammere ein x aus: [mm] f(x)=x*(4x^2-6x-3) [/mm]
Nun hast du ein Produkt und das wird genau dann Null, wenn einer der Faktoren Null ist, also.....


>  Evtl. auch wie man mit Maximal-/Minimal-/Wende- und
> Sattelstellen weitermacht?
>  Dann hätte ich endlich mal ein Bsp. welches ich für
> weitere Übungsaufgaben "nehmen" kann...

Wir sind hier keine Lösungsmaschine. An welche Stelle kommst du denn nicht weiter? Hast du schon die Ableitungen gebildet? Schreib uns mal wie weit du schon bist.

>  
> Ganz lieben Dank im voraus!
>  Liebe Grüße
>  
> (Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.)
>  

Gruß Patrick

Bezug
                
Bezug
Extremstellen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:28 Di 17.03.2009
Autor: Kawosiri

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Super, danke!!!

Also geht's weiter mit:

x(4x^2-6x-3) I :4

x^2-bruch{3}{2}x-bruch{3}{4}=0

bruch{3}{4}\pm\wurzel{bruch{9}{16}- bruch{3}{4}

x01 = 0
x02 =1
x03=0,5

f´(x) = 12x^2 -12x-3
f´(x) = 0  -> 12x^2-12x-3=0  I:12
x^2-x-bruch{1}{4}=0

bruch{1}{2}\pm\wurzel\bruch{1}{4}-\bruch{1}{4} =???

Dann komme ich wieder nicht weiter :-(

Bezug
                        
Bezug
Extremstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:01 Di 17.03.2009
Autor: MathePower

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo Kawosiri,

> Eingabefehler: "{" und "}" müssen immer paarweise
> auftreten, es wurde aber ein Teil ohne Entsprechung
> gefunden (siehe rote Markierung)
>  
> Super, danke!!!
>  
> Also geht's weiter mit:
>  
> x(4x^2-6x-3) I :4
>  
> x^2-bruch{3}{2}x-bruch{3}{4}=0
>  
> bruch{3}{4}\pm\wurzel{bruch{9}{16}- bruch{3}{4}
>  
> x01 = 0
>  x02 =1
>  x03=0,5

Die Lösungen von [mm]x^2-\bruch{3}{2}x-\bruch{3}{4}=0[/mm] stimmen nicht:

[mm]x^2-\bruch{3}{2}x-\bruch{3}{4}=0[/mm]

[mm]\gdw \left(x-\bruch{3}{4}\right)^{2}-\left(\bruch{3}{4}\right)^{2}-\bruch{3}{4}=0[/mm]

[mm]\gdw \left(x-\bruch{3}{4}\right)^{2}-\bruch{9}{16}-\bruch{3}{4}=0[/mm]

[mm]\Rightarrow x_{2,3}=\bruch{3}{4} \pm \wurzel{\bruch{9}{16}\red{+}\bruch{3}{4}}[/mm]


> f´(x) = [mm] 12x^2 [/mm] -12x-3
>  f´(x) = 0  -> [mm] 12x^2-12x-3=0 [/mm]  I:12

>  [mm] x^2-x-bruch{1}{4}=0 [/mm]
>  
> [mm] bruch{1}{2}\pm\wurzel\bruch{1}{4}-\bruch{1}{4} [/mm] =???
>  
> Dann komme ich wieder nicht weiter :-(


Auch hier:

[mm]x^2-x-\bruch{1}{4}=0[/mm]

[mm]\gdw \left(x-\bruch{1}{2}\right)^{2}-\left(\bruch{1}{2}\right)^{2}-\bruch{1}{4}=0[/mm]

[mm]\gdw \left(x-\bruch{1}{2}\right)^{2}-\bruch{1}{4}-\bruch{1}{4}=0[/mm]

[mm]\Rightarrow x_{4,5}=\bruch{1}{2} \pm \wurzel{\bruch{1}{4}\red{+}\bruch{1}{4}}[/mm]


Gruß
MathePower

Bezug
        
Bezug
Extremstellen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:32 Di 17.03.2009
Autor: Heureka89

Kontrollier nochmal deine Nulsstellen, weil du hast wie ich sehe für die Nullstellen [mm] x_0 [/mm] = 0, [mm] x_1=1, x_2 [/mm] = 0,5 raus.
[mm] x_0 [/mm] ist eine Nullstelle, aber die anderen beiden nicht.
f(1) = -5 und f(0,5) = -2,5

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de