www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Extremum(Lagrange)
Extremum(Lagrange) < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremum(Lagrange): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:14 Mo 30.08.2010
Autor: TheBozz-mismo

Aufgabe
Sei [mm] A={(x,y);x^2+2y^2+xy+e^{2-xy}=9}, [/mm] und sei [mm] f:\IR^2->\IR [/mm] definiert durch [mm] f(x,y)=x^2+2y^2. [/mm]
Wir behaupten, dass die Funktion [mm] f:A->\IR [/mm] ihr Maximum annimmt in (2,1). Was sagt der Multiplikatorsatz vpn Lagrange zu dieser Aussage?

Hallo erstmal!
Versuche, diese Aufgabe zu bewältigen, doch weiß nicht so recht, wie ich verfahren soll.

ALso der Satz sagt ja, dass man Extremkandidaten findet bei Napla(also erste partiell ABleitung nach x und [mm] y)f(x,y)=\lambda [/mm] nabla a(x,y)
a(x,y) ist die Menge A als Funktion umgestellt

Wenn ich die Ableitungen berechne und den Punkt (2,1) einsetze, dann kommt da [mm] \vektor{4 \\ 4}=\lambda\vektor{4 \\ 4}, [/mm] also ist dieser Punkt nach Lagrange ein Extremkandidat. Jetzt muss man noch zeigen, dass es ein Maximum ist mit der Hessematrix.
Ich frage euch: Würde das reichen? Ich finde, die Aufgabe ist unpräzise gestellt. Reicht das oder muss man erst die Lagrange-Funktion allgemein ableiten und dann rechnen, ob dieser Punkt herauskommt oder reicht einfach einsetzen?

Ganz egal, ob ich es zeigen muss oder nicht, möchte ich gerne das Maximum berechnen(also ich tue so, als wüsste ich nicht, wo das Maximum liegt)
Also ich bilde zuerst die Ableitungen
[mm] \partial_{x} =2x+2x\lambda [/mm] + [mm] \lambda [/mm] y [mm] -ye^{2-xy}\lambda [/mm] =0
[mm] \partial_{y} =4y+4y\lambda [/mm] + [mm] x\lambda -xe^{2-xy}\lambda [/mm] = 0
[mm] \partial_{\lambda} =x^2+2y^2+xy+e^{2-xy}-9 [/mm] =0

Jetzt weiß ich absolut nicht, wie ich weiter vorgehe. Klar, es sind 3 Gleichungen und 2 Variablen(Lambda muss ich ja nicht berechnen, oder?), aber mich stört die e-Funktion.
Ich hab mal was versucht:
[mm] x\partial_{x} -y\partial_{y} [/mm] . Dann habe ich folgendes raus:
[mm] 2x^2-4y^2+\lambda(2x^2-4y^2) [/mm] und dann stelle ich nach x um und erhalte [mm] x=+\- \wurzel{2}y [/mm] und wie jetzt weiter verfahren?

Ich hab echt Probleme, die Gleichungssysteme zu lösen. Kann mir wer helfen und meine Fragen beantworten?

Ich bedanke mich schonmal für jede Hilfe

TheBozz-mismo

        
Bezug
Extremum(Lagrange): Antwort
Status: (Antwort) fertig Status 
Datum: 15:32 Mo 30.08.2010
Autor: leduart

Hallo
genau, weil das GS nicht so elementar zu lösen geht, ist heir ein ergebnis vorgegebn, und du sollst nur zeigen, dass die (2,1) es lösen. Wenn du das GS lösen könntest, hätten die Aufgabensteller das auch verlangt.
Gruss leduart


Bezug
                
Bezug
Extremum(Lagrange): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:56 Mo 30.08.2010
Autor: TheBozz-mismo

Ok, vielen Dank für deine Hilfe

TheBozz-mismo

Bezug
                        
Bezug
Extremum(Lagrange): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:58 Mo 30.08.2010
Autor: TheBozz-mismo

Entschuldigung. Sollte keine Frage sein, sondern eine Mitteilung!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de