www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Extremum mit Nebenbedingung
Extremum mit Nebenbedingung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremum mit Nebenbedingung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:39 Fr 23.12.2011
Autor: MaxiN

Aufgabe
f(x,y)=ln(x*sin(y)+1)

a) Skizzieren Sie die Schnitte der Funktionen mit den 3 Ebenen y=-pi/2,0,pi(2
b) Skizziern Sie den Schnitt der Funktion mit der Ebene x=1
c) Führen Sie die Nebenbedingung x²=y² ein und bestimmen Sie ein Extremum nach der Methode von Lagrange

Hallo,

Aufgabe a) und b) sind keinerlei Problem. Nur bei der Aufgabe c) habe ich mein Probleme.

Was ich mir bisher überlegt habe:

f(x,y)=ln(x*sin(y)+1) Die Nebenbedingung ist g(x,y)=y²-x²

Funktion zusammen mit Lagrange Multiplikator

G(x,y,lambda)=ln(x*sin(y)+1)+lambda y² - lambda x²

Jetzt nach jeder Variablen differenziert:

dG/dx=(sin(y))/(x*sin(y)+1) - 2 lambda x = 0

dG/dy=(x*cos(y)/(x*sin(y)+1) + 2 lambda y = 0

dG/dlambda=y²-x²                                   = 0

=> y²=x² => y=x

Jetzt zur Schwierigkeit, wie kann ich die oberen Beziehungen nach x auflösen. Damit ich schließlich das Extremum bestimmen kann. Oder stimmt der ganze Ansatz nicht? Vielen Dank im Voraus

Gruß

Maxi


        
Bezug
Extremum mit Nebenbedingung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:16 Fr 23.12.2011
Autor: MathePower

Hallo MaxiN,

> f(x,y)=ln(x*sin(y)+1)
>  
> a) Skizzieren Sie die Schnitte der Funktionen mit den 3
> Ebenen y=-pi/2,0,pi(2
>  b) Skizziern Sie den Schnitt der Funktion mit der Ebene
> x=1
>  c) Führen Sie die Nebenbedingung x²=y² ein und
> bestimmen Sie ein Extremum nach der Methode von Lagrange
>  Hallo,
>  
> Aufgabe a) und b) sind keinerlei Problem. Nur bei der
> Aufgabe c) habe ich mein Probleme.
>  
> Was ich mir bisher überlegt habe:
>  
> f(x,y)=ln(x*sin(y)+1) Die Nebenbedingung ist
> g(x,y)=y²-x²
>  
> Funktion zusammen mit Lagrange Multiplikator
>  
> G(x,y,lambda)=ln(x*sin(y)+1)+lambda y² - lambda x²
>  
> Jetzt nach jeder Variablen differenziert:
>  
> dG/dx=(sin(y))/(x*sin(y)+1) - 2 lambda x = 0
>  
> dG/dy=(x*cos(y)/(x*sin(y)+1) + 2 lambda y = 0
>  
> dG/dlambda=y²-x²                                   = 0
>
> => y²=x² => y=x
>
> Jetzt zur Schwierigkeit, wie kann ich die oberen
> Beziehungen nach x auflösen. Damit ich schließlich das
> Extremum bestimmen kann. Oder stimmt der ganze Ansatz
> nicht? Vielen Dank im Voraus
>  

Der Ansatz stimmt schon.

Löse die ersten beiden Gleichungen nach [mm]\lambda[/mm] auf,
und setze diese dann gleich. Löse dann dies nach x auf.

Das Ergebnis setzt Du dann in die 3. Gleichung ein.


> Gruß
>
> Maxi

>


Gruss
MathePower  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de