www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Extremwert
Extremwert < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:03 So 07.01.2007
Autor: Dr.Sinus

Aufgabe
Einem Quadrat mit der Seitenlänge a ist ein gleichschenkliges Dreieck so einzuschreiben, dass seine Spitze in einer Ecke des Quadrats liegt. Wie sind die Seitenlängen des Dreiecks zu wählen, damit sein Flächeninhalt maximal wird?

Ein kräftiges "Hallo" erstmal!
Der Mathe-Test naht und ich habe leider meine Probleme mit den "geometrischen Extremwertbeispielen", ich finde leider die Nebenbedingungen nicht.
Ich bitte daher um eine Erklärung dieses Beispiels!
Danke
Sinus

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Extremwert: Antwort
Status: (Antwort) fertig Status 
Datum: 20:19 So 07.01.2007
Autor: M.Rex

Hallo

Ich verstehe es so, dass beide Schenkel des Dreiecks auf den Seiten des Quadrates liegen sollen.

Dann hast du ja ein Rechtwinkliges Dreieck mit den Schenkellängen x, so dass für den Flächeninhalt gilt:

[mm] A=\bruch{1}{2}*x*x, =\bruch{x²}{2} [/mm]

Diese Aufgabe wäre dann aber irgendwie "sinnfrei", da dann offensichtlich das Dreieck mit der Diagonale als grösstes Dreieck herauskommt.

Wenn du evtl eine Skizze dazu hast, stelle sie mal online.

Marius.

Bezug
        
Bezug
Extremwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:26 So 07.01.2007
Autor: Dr.Sinus

Vielen Dank für die rasche Anwort!
Auf Wunsch wurde die Skizze hochgeladen

Bezug
        
Bezug
Extremwert: Antwort
Status: (Antwort) fertig Status 
Datum: 20:36 So 07.01.2007
Autor: M.Rex

Hallo

Danke für die Skizze.

Hier würde ich versuchen, die Fläche des Dreiecks zu berechnen, indem ich die anderen Flächen im Quadrat von der Fläche des Quadrates abziehe:

Dazu zuerst mal die Fläche eines der beiden Dreiecke mit den Katheten x und a

[mm] A=\bruch{1}{2}ax [/mm]

Da du davon zwei hast, gilt für die Gesamtfläche:
A=ax

Bleibt noch das kleine Dreieck oben. Da es rechtwinklig ist, gilt:
[mm] A=\bruch{1}{2}(a-x)(a-x) [/mm]

Also gilt für das Gesuchte Dreieck:

[mm] A=a²-[ax+\bruch{1}{2}(a-x)²] [/mm]
=a²-[ax+0,5a²-ax+x2]
=0,5a²-x²

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de