www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Extremwert Maximum
Extremwert Maximum < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwert Maximum: Aufgabe + Ansatz
Status: (Frage) beantwortet Status 
Datum: 18:30 So 01.10.2006
Autor: Swoosh

Hallo,
ich bin gerade am rechnen und ich habe ein Problem und zwar mit folgender Aufgabe:

Aufgabe
Ein Zaun von 40 m Länge soll dazu verwendet werden, eine rechteckige Fläche mit größtmöglichem Inhalt einzuschließen. Man ermittle die Länge a, die Breite b und den maximalen Flächeninhalt dieses Rechtecks.


Mein Ansatz:

Gegeben: U = 40 m   U= (2*a)+ (2*b)

               1)  b= [mm] \bruch{U-2a}{2} [/mm] Müsste die Extremalbedingung sein!?
                
                2)  A= a * b

I) in II)


A= [mm] a*\bruch{U-2a}{2} [/mm]

Ableitung bilden:

A'(a) = 1* [mm] \bruch{U-2a}{2} [/mm] * a*  [mm] \bruch{-2 *2 - (U -2a) * 0}{4} [/mm] =>

A'(a)= 1* [mm] \bruch{U-2a}{2} [/mm] + a * [mm] \bruch{-4}{4} [/mm]

A'(a) = [mm] \bruch{U-2a}{2} [/mm] + [mm] \bruch{-4a}{4} [/mm]

Null setzen => 0= [mm] \bruch{U-2a}{2} [/mm] + [mm] \bruch{-4a}{4} [/mm]

0 = + [mm] \bruch{U-2a}{2} [/mm] - a
...[...]...
2a = U -2a
4a = U

a = 10  <- Leider kann das nicht angehen ;-) dann hätten wir ein Quadrat und kein Rechteck. Also wo liegt der Fehler?
Und eine bitte noch könntet ihr aufführen, warum der minimal Wert über Null ist und der miximal Wert unter Null!?

Danke.

        
Bezug
Extremwert Maximum: Antwort
Status: (Antwort) fertig Status 
Datum: 19:04 So 01.10.2006
Autor: Karl_Pech

Hallo Swoosh,


> 4a = U
>
> a = 10  dann hätten
> wir ein Quadrat und kein Rechteck.


Ein Quadrat ist ein Rechteck bei dem alle Seiten gleiche Länge haben. Insofern hast du die Aufgabe gelöst. [ok]


> <- Leider kann das nicht angehen ;-)


Ich zitiere mal Cantor als er über ein Ergebnis in einer seiner Arbeiten ausgerufen haben soll: "Ich sehe es, aber ich glaube es nicht!" ;-)


>  Und eine bitte noch könntet ihr aufführen, warum der
> minimal Wert über Null ist und der miximal Wert unter
> Null!?


Also du meinst die Sache mit der 2ten Ableitung? Die 2te Ableitung gibt die Krümmung des Graphen einer Funktion an: [][guckstduhier].



Viele Grüße
Karl





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de