www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Extremwert finden
Extremwert finden < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwert finden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:31 Mo 06.12.2010
Autor: Paul94

Aufgabe
Ein Dachboden hat als Querschnittsfläche ein gleichschenkliges Dreieck. mit einer Höhe von 4,8m  und eine Breite von 8m. In ihm soll ein möglichst großes quaderförmiges Zimmer eingerichtet werden. Gib die Maße des Zimmers an.

Hi!

Ich habe mich an diese Aufgabe gesetzt. Als Lösung für x soll x = 2 herauskommen, ich komme aber auf ein etwas anderes Ergebnis.

Hier mein Rechenweg:

Die Höhe des Raumes bezeichne ich mit h und die Breite mit 2x (jeweils ein x von der Höhe zu beiden Seiten).

Nun gilt für den Flächeninhalt des Rechtecks, dass bei einem Querschnitt entsteht $A = 2 [mm] \cdot [/mm] x [mm] \cdot [/mm] h$, als $f(x) = 2 [mm] \cdot [/mm] x [mm] \cdot [/mm] h$.

Nun gilt laut den Strahlensätzen folgendes: [mm] $\bruch{4,8 - h}{x} [/mm] = [mm] \bruch{4,8}{4}$. [/mm] Nach h aufgelöst wären das dann $h = 4,8 - [mm] \bruch{4,8x}{4}$. [/mm] Wenn ich das dann in die Funktion für den Flächeninhalt einsetze lautet die $f(x) = 2 [mm] \cdot [/mm] x [mm] \cdot [/mm] (4,8 - [mm] \bruch{4,8x}{4})$, [/mm] was $f(x) = [mm] -2,4x^2 [/mm] + 9,6x$ entspricht.

Die erste Ableitung der Funktion ist $f´(x) = -4,8x + 9,6$. Mit 0 gleichgesetzt und nach x aufgelöst erhalte ich x = [mm] 1,958\overline{3}$. [/mm] Wie gesagt soll x = 2 die richtige Lösung sein.

Könnt ihr mir sagen, wo mein Fehler liegt?

Danke, Paul

        
Bezug
Extremwert finden: Antwort
Status: (Antwort) fertig Status 
Datum: 16:36 Mo 06.12.2010
Autor: fred97


> Ein Dachboden hat als Querschnittsfläche ein
> gleichschenkliges Dreieck. mit einer Höhe von 4,8m  und
> eine Breite von 8m. In ihm soll ein möglichst großes
> quaderförmiges Zimmer eingerichtet werden. Gib die Maße
> des Zimmers an.
>  Hi!
>  
> Ich habe mich an diese Aufgabe gesetzt. Als Lösung für x
> soll x = 2 herauskommen, ich komme aber auf ein etwas
> anderes Ergebnis.
>  
> Hier mein Rechenweg:
>  
> Die Höhe des Raumes bezeichne ich mit h und die Breite mit
> 2x (jeweils ein x von der Höhe zu beiden Seiten).
>  
> Nun gilt für den Flächeninhalt des Rechtecks, dass bei
> einem Querschnitt entsteht [mm]A = 2 \cdot x \cdot h[/mm], als [mm]f(x) = 2 \cdot x \cdot h[/mm].
>  
> Nun gilt laut den Strahlensätzen folgendes: [mm]\bruch{4,8 - h}{x} = \bruch{4,8}{4}[/mm].
> Nach h aufgelöst wären das dann [mm]h = 4,8 - \bruch{4,8x}{4}[/mm].
> Wenn ich das dann in die Funktion für den Flächeninhalt
> einsetze lautet die [mm]f(x) = 2 \cdot x \cdot (4,8 - \bruch{4,8x}{4})[/mm],
> was [mm]f(x) = -2,4x^2 + 9,6x[/mm] entspricht.
>  
> Die erste Ableitung der Funktion ist $f´(x) = -4,8x +
> 9,6$. Mit 0 gleichgesetzt und nach x aufgelöst erhalte ich
> x = [mm]1,958\overline{3}$.[/mm] Wie gesagt soll x = 2 die richtige
> Lösung sein.
>  
> Könnt ihr mir sagen, wo mein Fehler liegt?


Rechnen ist eine hohe Kunst !!

Du hattest also die Gleichung -4,8x+9,6=0.

damit ist $x= [mm] \bruch{9,6}{4,8}=2$ [/mm]

Wie bist Du da auf  $x [mm] =1,958\overline{3}$ [/mm] gekommen ??

FRED

>  
> Danke, Paul


Bezug
                
Bezug
Extremwert finden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:40 Mo 06.12.2010
Autor: Paul94


> Rechnen ist eine hohe Kunst !!
>  
> Du hattest also die Gleichung -4,8x+9,6=0.
>  
> damit ist [mm]x= \bruch{9,6}{4,8}=2[/mm]
>  
> Wie bist Du da auf  [mm]x =1,958\overline{3}[/mm] gekommen ??
>  
> FRED

Wie wahr, ich hatte versehentlich [mm] $\bruch{9,4}{4,8}$ [/mm] anstatt von [mm] $\bruch{9,6}{4,8}$ [/mm] gerechnet.

Danke sehr, Paul

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de