Extremwertaufgabe < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:01 So 12.02.2006 | Autor: | Nobbie |
Aufgabe | In einem Sportstadion soll eine 400m lange Aschebahn aus zwei parallelen geraden Laufstrecken und zwei angesetzten Halbkreisen so angelegt werden, dass das rechteckige Spielfeld zwischen den geraden Strecken einen möglichst großen Flächeninhalt hat. Berechnen Sie Länge der Laufstrecke und den Radius der Halbkreise. |
Hallo zusammen,
ich scheitere leider komplett bei der Lösung dieser Aufgabenstellung...
Wenn ich mir das Vorstelle habe ich ein Rechteck mit einer Seitenlänge von 400m und einer Seitenlänge von Xm, die gleichzeitig der Durchmesser meines Kreises ist....Aber wie kann ich das Lösen?
Ich bin für Hilfe aller Art dankbar.
Vielen Dank und noch einen schönen Sonntag Abend
nobbie
PS:Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo!
> In einem Sportstadion soll eine 400m lange Aschebahn aus
> zwei parallelen geraden Laufstrecken und zwei angesetzten
> Halbkreisen so angelegt werden, dass das rechteckige
> Spielfeld zwischen den geraden Strecken einen möglichst
> großen Flächeninhalt hat. Berechnen Sie Länge der
> Laufstrecke und den Radius der Halbkreise.
> Hallo zusammen,
>
> ich scheitere leider komplett bei der Lösung dieser
> Aufgabenstellung...
> Wenn ich mir das Vorstelle habe ich ein Rechteck mit einer
> Seitenlänge von 400m und einer Seitenlänge von Xm, die
> gleichzeitig der Durchmesser meines Kreises ist....Aber wie
> kann ich das Lösen?
> Ich bin für Hilfe aller Art dankbar.
>
>
> Vielen Dank und noch einen schönen Sonntag Abend
Also, ich gehe mal davon aus, dass du das Grundprinzip von solchen Aufgaben kennst. Dann kurz ein Hinweis zur Aufgabenstellung: ich denke nicht, dass die Seitenlänge des Rechtecks 400 m sein soll, sondern die komplette Runde, die man dann laufen kann (jedenfalls gibt es Sportplätze, bei denen eine Runde genau 400 m sind, 200 m Bahnen sind mir auch bekannt, alles andere ist mir noch nicht untergekommen). Das heißt, du kennst nur den Gesamtumfang. Dieser beträgt also 400 m und ergibt sich aus den beiden (vermutlich längeren) Rechteckseiten und den beiden Halbkreisen.
Nun soll das Rechteck möglichst groß werden. Die Formel für den Flächeninhalt eines Rechtecks ist $A=a*b$. Sagen wir hier jetzt mal a ist die Länge und b die Breite. Das ist also unsere Zielfunktion, die maximiert werden soll. Nun soll die Breite b der Durchmesser des Kreises sein.
Für den Umfang, unsere Nebenbedingung, können wir also nun schreiben: [mm] $U=2*a+\pi*b$. [/mm] Damit hast du eine Zielfunktion und eine Nebenbedingung, und es dürfte kein großes Problem mehr sein, die Aufgabe zu lösen.
Viel Spaß dabei!
Bastiane
|
|
|
|