www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Extremwertaufgabe
Extremwertaufgabe < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:29 Mo 04.10.2004
Autor: rapher

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Guten Tag fleißige Helfer,

habe bei folgender Aufgabe Probleme die Extrimal- und Nebenbedingung aufzustellen:

"Aus einem Baumstamm mit kreisförmigen Querschnitt soll ein Balken so geschnitten werden, dass der Abfall minimal wird."

Ich hab keine Ahnung wie ich daran gehen soll...habe an ein Quadrat gedacht im Kreis...mit A=2*r² aber weiter bin ich nicht gekommen ... Hoffe ihr könnt mir helfen.

MfG,
Raphael



        
Bezug
Extremwertaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:43 Mo 04.10.2004
Autor: Hanno

Hallo Rapher!

[willkommenmr]

Ein Ansatz wäre der folgende:
Du denkst dir den kreisförmigen Querschnitt des Baumstammes und dazugehörig den Mittelpunkt dieses Kreises. Den Radius des Baumstammes kannst du beliebig auf 1 setzen, damit erleichterst du dir die Arbeit ein wenig.

Unsere Veränderliche soll der Winkel [mm] $\varphi$ [/mm] werden, den ich im Bild eingezeichnet habe:
[Dateianhang nicht öffentlich]

Wie im Bild eingemalt siehst du, dass die Grundfläche des Holzbalkens das Doppelte des Sinus von [mm] $\varphi$ [/mm] ist. Die Höhe des Balkens ist dementsprechend das doppelte des Kosinus' von [mm] $\varphi$. [/mm]
Somit lautet bei gegebenem Winkel [mm] $\varphi$ [/mm] die Querschnittsfläche des Holzstückes:
[mm] $2cos(\varphi)\cdot 2sin(\varphi)=4cos(\varphi)sin(\varphi)$. [/mm]
Wegen [mm] $sin(2\alpha)=2sin(\alpha)cos(\alpha)$ [/mm] kannst du den Term noch zu
[mm] $=2sin(2\varphi)$ [/mm]
zusammenfassen.

Der Abfall ist nun die Differenz aus der Querschnittsfläche des Baumstammes und der des herausgeschnittenen Holzes. Die leitest du dann ab und suchst dir wie gewöhnlich dein Minimum.

Schaffst du das?

Liebe Grüße,
Hanno

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
                
Bezug
Extremwertaufgabe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:32 Mo 04.10.2004
Autor: Hanno

Hi!
Noch eine kleine Anmerkung:
Ich habe jetzt impliziert, dass der herauszuschneidende Balken an vier Punkten mit der Kreisperipherie des Querschnittes übereinstimmt. Dies wurde so nicht vorgegeben, man kann es scih aber recht einfach klar machen, schließlich ist jeder Balken, der die Peripherie nicht berührt, nicht optimal ausgeschnitten, da man ihn ihr hin noch weiter verlängern und somit den Abfall geringer machen würde.

Ist nicht die Welt, sollte aber erwähnt werden.

Liebe Grüße,
Hanno

Bezug
                
Bezug
Extremwertaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:13 Di 05.10.2004
Autor: rapher

Ehrlich gesagt bringt mich dein Ansatz nicht wirklich weiter!

Habe jetzt aber einen anderen Lösungsweg gefunden:

Sei x, y die Seiten des Balkens, d der Durchmesser des Kreises und des Rechtecks!

1.  A(x,y) = [mm] \pi [/mm] *  (  [mm] \bruch{d}{2})² [/mm] - x * y  -> min.
2.  y= [mm] \wurzel{x²-d²} [/mm]

Zielfunktion: A(x) = [mm] \pi [/mm] *  (  [mm] \bruch{d}{2})² [/mm] - x * [mm] \wurzel{x²-d²} [/mm]







Bezug
                        
Bezug
Extremwertaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 14:25 Di 05.10.2004
Autor: Hanno

Hi Raphael!

Ok, so kann man es auch machen - sehr schön [ok]!


Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de