www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Extremwertaufgabe
Extremwertaufgabe < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:38 Mi 09.01.2008
Autor: Informacao

Aufgabe
Gegeben sind: [mm] T(-\wurzel{a}/-\bruch{2}{\wurzel{a}}) [/mm] und [mm] H(\wurzel{a}/\bruch{2}{\wurzel{a}}) [/mm]

Die Strecke von T nach H soll die Seite eines Quadrats bilden. Ermitteln Sie den Wert von a, für den der Flächeninhalt dieses Quadrats minimal wird.

Hallo,

allsooo.. sitze schon was länger daran... Habe mir dann mal eine "Musterlösung" angeschaut, die so aussieht:

Da der Graph punktsymmetrisch ist gilt für die Strecke zwischen Hoch- und Tiefpunkt:

b = 2*l
mit l² = (√a)² + (2/√a)²
=> l = √(a+4/a)

A(a) = b²
A(a) = (2√(a+4/a))²
A(a) = 4a+16/a

A'(a) = 4 - 16/a²
A''(a) = 32/a³

notw. Bedingung: A'(a) = 0
4 - 16/a² = 0
a = 2 v a = -2 (für eine Strecke nicht definiert)

hinreichende Bed: A'(a) = 0 ∧ A''(a) ≠ 0
A''(2) = 32 / 8 = 4 > 0

-> Minimum bei a = 2

______________________________

Im Prinzip kann ich das ja auch nachvollziehen..mein Problem aber: Wie kommt man auf den allerersten Schritt??Also wieso gilt, dass b=2*l ist.. ? Und was hat das mit der Punktsymmetrie zu tun??

Würde mich über jede Hilfe freuen!
LG
Informacao

        
Bezug
Extremwertaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 22:46 Mi 09.01.2008
Autor: M.Rex

Hallo

Da die Funktion Punktsymmetrisch zum Ursprung ist, geht auch die Verbindungslinie, du hast diese mit b benannt durch diesen, mehr noch, der Ursprung teilt b in zwei gleich lange Teilstrecken der Länge l.

Und jetzt kannst du mit Hilfe des Satzes von Pythagoras diese Strecke l berechnen, mit [mm] l²=x_{e}²+f(x_{e})², [/mm] wobe [mm] x_{e} [/mm] die  hier gegebene Koordinate des Extrempunktes ist, also [mm] \wurzel{a} [/mm]

Marius

Bezug
                
Bezug
Extremwertaufgabe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:53 Mi 09.01.2008
Autor: Informacao

Danke für die gute Erklärung! Jetzt versuche ich es mal!

LG

Bezug
                
Bezug
Extremwertaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:05 Mi 09.01.2008
Autor: Informacao


>  
> Und jetzt kannst du mit Hilfe des Satzes von Pythagoras
> diese Strecke l berechnen, mit [mm]l²=x_{e}²+f(x_{e})²,[/mm] wobe
> [mm]x_{e}[/mm] die  hier gegebene Koordinate des Extrempunktes ist,
> also [mm]\wurzel{a}[/mm]

Hi,

habe doch nochmal eine Frage.. wie kommt man dann denn auf den Pythagoras?

LG

Informacao

Bezug
                        
Bezug
Extremwertaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 01:08 Do 10.01.2008
Autor: M.Rex

Hallo.

Zieh mal die Verbindungslinie vom Extrempunkt zur x-Achse, und gehe von dort dann zum Ursprung entlang der x-Achse.

Dann hast du ein rechtwinkliges Dreieck

Marius

Bezug
                                
Bezug
Extremwertaufgabe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:16 Do 10.01.2008
Autor: Informacao

Stimmt. Danke :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de