www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Abiturvorbereitung" - Extremwertaufgabe
Extremwertaufgabe < Abivorbereitung < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abiturvorbereitung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:09 Do 27.03.2008
Autor: gs43

Aufgabe
Die Funktion  [mm] f_k(x)= (x-k)e^2^-^\bruch{x}{k} [/mm]  ist gegeben.
Lege auf dem Segment von [mm] K_k, [/mm] das im 4. Feld liegt, einen Punkt P fest und fälle von ihm das Lot auf die y-Achse mit dem Fußpunkt F. Verbinde P außerdem mit dem Ursprung. Bei welcher Lage von P ist der Inhalt des Dreiecks 0PF möglichst gross?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo,
ich wäre sehr dankbar, falls jemand mir so weit es geht alles erklären könnte. Ich weiß nur, dass das eine Extremwert-Aufgabe ist. Wir haben zwar schon ein paar mal Extremwert-Aufgaben gemacht, aber die waren völlig anders. Also, ich hoffe ihr könnt mir helfen.

        
Bezug
Extremwertaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 20:20 Do 27.03.2008
Autor: Steffi21

Hallo,

das Dreieck hat die
Grundseite [mm] \overline{FP}\hat=x [/mm]
und die Höhe [mm] \overline{FO}\hat=f(x) [/mm]

[mm] A=\bruch{1}{2}*x*f(x) [/mm]

jetzt solltest du den Anfang für die Extremwertbetrachtung haben

Steffi

Bezug
        
Bezug
Extremwertaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 21:05 Do 27.03.2008
Autor: angela.h.b.


> Die Funktion  [mm]f_k(x)= (x-k)e^2^-^\bruch{x}{k}[/mm]  ist
> gegeben.
>  Lege auf dem Segment von [mm]K_k,[/mm] das im 4. Feld liegt, einen
> Punkt P fest und fälle von ihm das Lot auf die y-Achse mit
> dem Fußpunkt F. Verbinde P außerdem mit dem Ursprung. Bei
> welcher Lage von P ist der Inhalt des Dreiecks 0PF
> möglichst gross?
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Hallo,
>  ich wäre sehr dankbar, falls jemand mir so weit es geht
> alles erklären könnte.

Hallo,

vielleicht solltest Du die Aufgabe erstmal für irgendein bestimmtes k bearbeiten, etwa für k=2.

Es ist also die Funktion [mm] f_2(x)= (x-2)e^{2-\bruch{x}{k}} [/mm]  gegeben.

Am besten skizzierst bzw. plottest Du sie mal, damit Du etwas vor Augen hast.

Das 4. Feld des Koordinatensystems ist das, wo die x-Werte positiv und die y-Werte negativ sind.

In diesem Bereich, also unten rechts, markier Dir mal einen Punkt [mm] P_1 [/mm] auf dem Graphen.Geh von Punkt [mm] P_1 [/mm] senkrecht hoch zur x-Achse und markiere diesen Punkt. Das ist der zugehörige Punkt [mm] F_1. [/mm] Der Ursprung, [mm] P_1 [/mm] und [mm] F_1 [/mm] bilden ein Dreieck, dessen Flächeninhalt Du berechnen kannst.

Nimm nun einen anderen Punkt [mm] P_2 [/mm] auf dem Graphen, markiere wie oben [mm] F_2, [/mm] betrachte den Flächeninhalt des Dreieckes [mm] UrsprungP_2 F_2. [/mm]

Dasselbe könnte man nun mit sämtlichen Punkten auf dem Graphen im 4.Feld tun, und die zu bearbeitende  Frage ist: Wo muß der Punkt P liegen, damit der Flächeninhalt des Dreieckes maximal ist.

Steffi hat Dir ja schon gesagt, daß heirfür die Funktion $ [mm] A(x)=\bruch{1}{2}\cdot{}x\cdot{}f(x) [/mm] $ zu maximieren ist.

Wie kommst sie zustande?

Wenn der Punkt P mit der x-Koordinate x auf dem Graphen der Funktion f liegt, ist seine y-Koordinate ja gerade f(x).
Wir betrachten also das Dreieck durch P(x, f(x)), F(x,0) und O(0,0).

Der Flächeninhalt des rechtwinkligen Dreicks ist die Hälfte des Produktes der Katheten. Wenn Dir nun klar ist, daß die eine Kathete die Lange x und die andere die Länge |f(x)| hat, solltest Du die Aufgabe verstanden haben.

Der Rest ist dann Routine, Extremwerte der Funktion A bestimmen.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abiturvorbereitung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de