www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Extremwertaufgabe
Extremwertaufgabe < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertaufgabe: Hilfe,, weiß nicht weiter
Status: (Frage) beantwortet Status 
Datum: 00:31 Mo 08.12.2008
Autor: yuppi

Aufgabe
http://www.bilder-space.de/show.php?file=08.12DjXcGI39sEhyHuV.jpg

Hab die aufgabe gescannt

bin gerade bei notw. bed weiß aber gar nnich wie es weiter geht...
kommt mir vor wie ein ratespiel

        
Bezug
Extremwertaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 00:53 Mo 08.12.2008
Autor: schachuzipus

Hallo yuppi,

was genau ist denn da zu tun?

Willst du überprüfen, ob [mm] $f_a''(\sqrt{a})\neq [/mm] 0$ ist?

Dann ist schon fast alles richtig, du hast nur im Nenner im letzten Ausdruck ein "hoch3" vergessen [mm] $(a+a)^3=(2a)^3=8a^3$ [/mm]

Den Zähler kannst du zusammenfassen [mm] $8a\sqrt{a}-24a\sqrt{a}=-16a\sqrt{a}$ [/mm]

Du hast also [mm] $...=\frac{-16a\sqrt{a}}{8a^3}=-\frac{2\sqrt{a}}{a^2}$ [/mm]

Und das ist sicher [mm] $\neq [/mm] 0$

War das deine Frage?!

Kurz noch zu den Bedingungen:

Du scheinst nach einem Extrempunkt zu suchen.

Notwendige Bedingung ist, dass [mm] $f_a'(x)=0$ [/mm] ist, ist ja auch einleuchtend, denn die Tangente im Extrempunkt muss waagerecht verlaufen, also Steigung 0 haben

Hinreichende Bedingung ist, dass $f'(x)=0$ UND [mm] $f''(x)\neq [/mm] 0$ ist (>0: Minimum, <0: Maximum)

Notwendige Bedingung bedeutet, dass die Bedingung $f'(x)=0$ für die Existenz eines Extremums zwingend erforderlich ist, dh, wenn [mm] $f'(x)\neq [/mm] 0$ ist, liegt garantiert kein Extremum vor.

Falls aber $f'(x)=0$ ist, so reicht das nicht für die Existenz eines Extremums, es kann durchaus sein, dass f an der Stelle [mm] $x_0$ [/mm] kein Extremum hat, obwohl [mm] $f'(x_0)=0$ [/mm] gilt (Stelle dir einen Sattelpunkt vor)

Hinreichende Bedingung bedeutet (hier), dass - wenn die Bedingung erfüllt ist, der Sachverhalt zwingend eintritt (hier, dass die Funktion ein Extremum hat)

LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de