Extremwertaufgabe < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:58 Sa 13.03.2010 | Autor: | leith |
Aufgabe | Aufgabenstellung:
Aus drei Brettern von der Breite "b" soll eine Rinne hergestellt werden, deren Querschnitt ein gleichschenkliges Trapez ist. Welchen Winkel schließen die Schenkel des trapezes mit der Grundlinie ein, wenn der Querschnitt ein Maximum annehmen soll?
Erste Überlegung: Hauptbedingung ist Fläche des Trapezes ist mit [mm] A=\bruch{a+c}{2}*h [/mm] |
Hallo liebe Mathefreunde,
ich versuche schon eine ganze weile irgendwie an die Aufgabe rann zu kommen aber irgendwie weiß ich nicht wie ich zu meiner nebenbedingung gelangen soll.Könnte mir irgend jemand einen Tipp geben wie ich auf die lösung kommen könnte?Wäre echt dankbar
Gruß Leith
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:11 Sa 13.03.2010 | Autor: | abakus |
> Aufgabenstellung:
>
> Aus drei Brettern von der Breite "b" soll eine Rinne
> hergestellt werden, deren Querschnitt ein gleichschenkliges
> Trapez ist. Welchen Winkel schließen die Schenkel des
> trapezes mit der Grundlinie ein, wenn der Querschnitt ein
> Maximum annehmen soll?
>
> Erste Überlegung: Hauptbedingung ist Fläche des Trapezes
> ist mit [mm] A=\bruch{a+c}{2}*h
[/mm]
> Hallo liebe Mathefreunde,
>
> ich versuche schon eine ganze weile irgendwie an die
> Aufgabe rann zu kommen aber irgendwie weiß ich nicht wie
> ich zu meiner nebenbedingung gelangen soll.Könnte mir
> irgend jemand einen Tipp geben wie ich auf die lösung
> kommen könnte?Wäre echt dankbar
Hallo,
nimm zunächst ein U-Form der Rinne an.
Die untere Breite ist b (die Breite der oben offenen Seite auch), und die Höhe der Seitenwände ist jeweils b.
Der Flächenihalt diese "Trapezes" (was sogar ein Quadrat ist) beträgt [mm]A=\bruch{b+b}{2}*b[/mm].
Jetzt biegst du beide Seitenwände etwas schräg nach außen. Die Höhe ist dann nicht mehr b, sondern etwas weniger. Zur Berechnung von h benötigst du b und den Sinus oder Kosinus des Neigungswinkels. (Was du brauchst, siehst du in einer geeigneten Skizze).
Die untere Breite ist immer noch b, aber die obere Breite ist links und rechts jeweils ein Stück größer geworden.
Auch diesen Breitenzuwachs bekommst du durch eine trigonometrische Beziehing zwischen der Länge b der Seitenwand und deinem Neigungswinkel.
Gruß Abakus
>
> Gruß Leith
|
|
|
|