www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Extremwertaufgabe
Extremwertaufgabe < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertaufgabe: Stimmt mein Ergebniss?
Status: (Frage) beantwortet Status 
Datum: 17:17 Di 13.09.2005
Autor: ONeill

Aufgabe ist folgende:

Für welche beiden positiven Zahlen, deren Produkt 8 ist, wir die Summe am kleinsten?
Mein Lösungweg:
Extremalbedingung: x+y=z  (x und y die beiden Zahlen und z die kleinste Summe)
Nebenbedingung: x*y=8
Zielbedingung: 8/y+y=z
Erste Ableitung davon: [mm] -8/y^2+1=z [/mm]
Dann habe ich z=0 gesetzt und rausbekommen y=Wurzel aus 8

Ist das nun richtig?

        
Bezug
Extremwertaufgabe: Fast richtig!
Status: (Antwort) fertig Status 
Datum: 17:28 Di 13.09.2005
Autor: Roadrunner

Hallo ONeill!


> Extremalbedingung: x+y=z  (x und y die beiden Zahlen und z
> die kleinste Summe)
> Nebenbedingung: x*y=8
> Zielbedingung: 8/y+y=z

[ok]


> Erste Ableitung davon: [mm]-8/y^2+1=z[/mm]
> Dann habe ich z=0 gesetzt und rausbekommen y=Wurzel aus 8

[notok] Zweimal Tippfehler! Du meinst hier doch: [mm] $z\red{'} [/mm] \ = \ [mm] 1-\bruch{8}{y^2} [/mm] \ = \ 0$

[mm] $y_e [/mm] \ = \ [mm] \wurzel{8}$ [/mm] ist richtig!

Aber Du musst das ja noch nachweisen als Minimum durch Einsetzen in die 2. Ableitung [mm] $z''(y_e) [/mm] \ > \ 0$ (hinreichendes Kriterium).

Wie lautet dann die andere Zahl $x_$ ?


Gruß vom
Roadrunner


Bezug
                
Bezug
Extremwertaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:46 Di 13.09.2005
Autor: ONeill

Vielen Dank für die Antwort!!

Also dann wäre die zweite ABleitung doch:
[mm] z''=16/y^3 [/mm]
Setze ich das =0 bekomme ich auch null für y raus und das darf ja nicht sein(zumindest bringt einen das nicht weiter).
Darum habe ich dann in die Ausgangsfunktion Werte eingesetzt, die knapp neben Wurzel 8 liegen. Dabei bekommen wir (wenn wir uns einen Graphen vorstellen)praktisch den y Wert der Punkte neben dem vermuteten Tiefpunkt. Ich habe also für diese "y Werte) 5,7 und 5 2/3 rausbekommen. Diese sind größer und somit haben wir ein absolutes Minimum an diesem Punkt, richtig??


Bezug
                        
Bezug
Extremwertaufgabe: hinreichendes Kriterium
Status: (Antwort) fertig Status 
Datum: 17:59 Di 13.09.2005
Autor: Roadrunner

Hallo ONeill!


> Also dann wäre die zweite ABleitung doch:
> [mm]z''=16/y^3[/mm]

[ok]


> Setze ich das =0 bekomme ich auch null für y raus und das
> darf ja nicht sein(zumindest bringt einen das nicht
> weiter).

[haee] Wieso das denn? Zum einen hat die 2. Ableitung keine Nullstellen!


Zum anderen sollst du hier ja nun den Wert [mm] $y_e [/mm] \ = \ [mm] \wurzel{8}$ [/mm] einsetzen:

[mm] $z''(y_e) [/mm] \ = \ [mm] z''(\wurzel{8}) [/mm] \ = \ [mm] \bruch{16}{\left(\wurzel{8} \ \right)^3} [/mm] \ = \ [mm] \bruch{\wurzel{2}}{2} [/mm] \ > \ 0$

Also, es handelt sich um ein Minimum!


Gruß vom
Roadrunner


Bezug
                                
Bezug
Extremwertaufgabe: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:08 Di 13.09.2005
Autor: ONeill

Ach stimmt. Vielen Dank du hast mir sehr (und dazu noch schnell ^^) geholfen. Vielleicht kann ich mich ja mal revangieren.
Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de