www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Extremwertaufgabe Abschlussprü
Extremwertaufgabe Abschlussprü < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertaufgabe Abschlussprü: Richtigkeitsprüfung
Status: (Frage) beantwortet Status 
Datum: 18:43 Fr 19.05.2006
Autor: Haase

Aufgabe
Aufgabe 1:
[Dateianhang nicht öffentlich]
a)Wie groß ist die Breite w in Abhängigkeit von b, wenn das Volumen Maximal sein soll, indem man die Querschnittsfläche A maximiert?
b)In welchem Verhältnis stehen dann die Längen w und h?
c)Berechnen Sie die Längen w und h bei einer Blechbreite b von 10m(Blau-Dickgedruckt).

Halla Allerseits!

Ich hatte heute meine Abschlussprüfung in Mathematik (Fachabi). Habe 5 verschieden Artige Aufgaben bekommen und 4/5 habe ich mit ziemlicher wahrscheinlichkeit richtig. Bei der ersten Aufgabe allerdings, bin ich mir >>sehr<< unsicher, ob ich Sie richtig gemacht habe, dehalb bitte ich euch, mir meine Lösung zu bestätigen oder diese zu berichtigen.



Mein Lösungsweg:
1.Hauptbedingung
A soll Max. sein!
A = h*w + [mm] w^2/4 [/mm]

2.Nebenbedingung
b=2h+2l              // l ist bei mit die Schräge vom Dreieck
h=b/2-w/(Wurzel 2)   //Zwischenrechnung: l = w /(Wurzel 2)
h in die Hauptbedingung:
[mm] A=b2/2-w^1/(Wurzel 2)+w^2/4 [/mm]

3.Funktionsgleichung A=f(w)
A=(1/4-1/(Wurzel [mm] 2))*w^2 [/mm] + b*w/2

4.Ableitungen [mm] A^1=f^1(w)=dA/dw [/mm]
[mm] A^1=(1/2-2/(Wurzel [/mm] 2))*w^+b/2
[mm] A^2=(1/2-2/(Wurzel [/mm] 2))

5. Extremwertbestimmung Pmax: [mm] f^1(w)=0 [/mm] und [mm] f^2(w)<0, [/mm] da lok.Max.
[mm] f^1(w)=0 [/mm] => 0 =...
w=-b/2(1/2-2/(Wurzel 2))
w = 3,64m
h=b/2-w/(Wurzel 2) = 2,43m
w/h=3,64m/2,43m=1,5
w=1,5h
[mm] A=h*w+w^2/4=12,2m^2 [/mm]
[mm] f^2(w)=-0,914<0 [/mm] => lok.Max.
l=2,57m


Ich Danke euch im Vorraus für eure nette Hilfe!! :)

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Extremwertaufgabe Abschlussprü: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:29 Sa 20.05.2006
Autor: Haase

Oh nein!

Bis zum Part "w=-b/2(1/2-2/(Wurzel 2))" habe ich alles richitg. Nur leider war ich zu blöd zum rechnen. Wenn man die 10m für b eingibt, dann kommt nicht mein Ergebnis "w = 3,64m" raus, sondern "5,47m".
Damit ist:
w= 5,47m
h=1,13m
[mm] A=13,7m^2 [/mm]

So ein Mist, dann bekomme ich kaum Punkte für diese Aufgabe, da ich leider diesen Fehler gemacht habe und somit ist alles was danach kommt auch Falsch. Teilpunkte wird auch nicht viel verteilt, da ich unübersichtlich mit cos und tan beim Dreieck gerechnet habe, somit kann ich die "1" vergessen.



Bezug
        
Bezug
Extremwertaufgabe Abschlussprü: Fehler selber bemerkt
Status: (Antwort) fertig Status 
Datum: 16:50 Sa 20.05.2006
Autor: Loddar

Hallo Haase!


Du hast Deinen Rechenfehler ja bereits selber gefunden.


Zur "Vereinfachung" würde ich jedoch den Ausdruck [mm] $\bruch{1}{2}-\bruch{2}{\wurzel{2}}$ [/mm] zusammenfassen zu:

[mm] $\bruch{1}{2}-\bruch{2}{\wurzel{2}} [/mm] \ = \ [mm] \bruch{1}{2}-\bruch{2\wurzel{2}}{2} [/mm] \ = \ [mm] \bruch{1-2\wurzel{2}}{2}$ [/mm]


Damit ergibt sich auch: [mm] $w_E [/mm] \ = \ [mm] \bruch{b}{2\wurzel{2}-1} [/mm] \ [mm] \approx [/mm] \ 0.547*b$


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de