www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Extremwertaufgaben
Extremwertaufgaben < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertaufgaben: Problem bei 2 Aufgaben
Status: (Frage) beantwortet Status 
Datum: 17:20 Sa 26.08.2006
Autor: Salino

Aufgabe
1. Aus einem zylindischen Baumstamm vom Durchmesser 0,12m soll ein Balken mit rechteckigem Querschnitt und von größter Tragfähigkeit geschnitten werden.
Die Tragfähigkeit ist zur Breite und zum Quadrat der Höhe proportional.

2) EIn Behälter soll die Form einer quadratischen Säule erhalten:
a) Die Oberfläche soll 200dm² betragen. Welcher der möglichen Körper hat maximales Volumen?
b)Das Volumen der Säule soll 200dm³ betragen. 1dm² des Materials für die Stand- und Deckfläche kostet 4 DM, 1dm² des Materials für die seitenfläche kostet 5DM. Welcher der möglichen BEhälter verursacht die geringsten Materialkosten.

Zu1)
So hier mal meine Ansäzte:

t(b,h) = k (konstante) * b * h²

An einer Skizze sieht man dann, dass man den Satz des Pytagoras anwenden muss ( d² = h² + b² ). So kommt man auf:

t(b) = k * b * (d²-b²) <=> t(b) = k*b*d²-k*b³

t'(b) = kd²-3kb²

Meine Idee ist hier, die Ableitung in die Scheitelpunktform einer Normalparabel zu bringen, aber dazu bin ich tatsächlich zu doof, weil da ein Minuszeichen ist.


Zu2) V=max= [mm] a^2 [/mm] * b; [mm] O=2a^2 [/mm] + 4ab
Weiter bin ich leider nicht gekommen. Hatte mal als ergebnis, dass es ein Würfel ist. Aber das kommt mir einfach zu easy vor.

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: Matheboard.de

        
Bezug
Extremwertaufgaben: Aufgabe 1
Status: (Antwort) fertig Status 
Datum: 18:12 Sa 26.08.2006
Autor: Zwerglein

Hi, Salino,

> 1. Aus einem zylindischen Baumstamm vom Durchmesser 0,12m
> soll ein Balken mit rechteckigem Querschnitt und von
> größter Tragfähigkeit geschnitten werden.
>  Die Tragfähigkeit ist zur Breite und zum Quadrat der Höhe
> proportional.
>  
>
> t(b,h) = k (konstante) * b * h²
>  
> An einer Skizze sieht man dann, dass man den Satz des
> Pytagoras anwenden muss ( d² = h² + b² ). So kommt man
> auf:
>  
> t(b) = k * b * (d²-b²) <=> t(b) = k*b*d²-k*b³
>  
> t'(b) = kd²-3kb²

Warum ersetzt Du d nicht durch die gegebene Zahl 0,12?
Dann würdest Du Dir leichter tun:

t'(b) = 0,0144*k - [mm] 3k*b^{2} [/mm]

Nun musst Du ja t'(b) =0 setzen und nach b auflösen!
Wozu brauchst Du da die Scheitelform?

mfG!
Zwerglein



Bezug
        
Bezug
Extremwertaufgaben: Aufgabe 2
Status: (Antwort) fertig Status 
Datum: 13:10 So 27.08.2006
Autor: Zwerglein

Hi, Salino,

alles klar mit Aufgabe 1 ?

Dann ein Tipp zu Aufgabe 2:

> 2) EIn Behälter soll die Form einer quadratischen Säule
> erhalten:
>  a) Die Oberfläche soll 200dm² betragen. Welcher der
> möglichen Körper hat maximales Volumen?
>  b)Das Volumen der Säule soll 200dm³ betragen. 1dm² des
> Materials für die Stand- und Deckfläche kostet 4 DM, 1dm²
> des Materials für die seitenfläche kostet 5DM. Welcher der
> möglichen BEhälter verursacht die geringsten
> Materialkosten.

> Zu2) V=max= [mm]a^2[/mm] * b; [mm]O=2a^2[/mm] + 4ab
>  Weiter bin ich leider nicht gekommen. Hatte mal als
> ergebnis, dass es ein Würfel ist. Aber das kommt mir
> einfach zu easy vor.

Ne, ne! Das ist schon die richtige Lösung für 2a!

Nun aber zu 2b:
Hier geht's ja um die Kosten (K).

Daher: K = [mm] 4*2a^{2} [/mm] + 5*4ab

Die Nebenbedingung  ist hier: [mm] a^{2}*b [/mm] = 200.

Schaffst Du "den Rest" alleine?

mfG!
Zwerglein
  



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de