www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Extremwertaufgaben, Hilfe.
Extremwertaufgaben, Hilfe. < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertaufgaben, Hilfe.: Lösungshilfe bei Esxtremwert
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 00:28 Mo 28.11.2005
Autor: cyberfreak071

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hi,

nun wir nehmen in der Schule zurzeit Praxis orientierte Extrema Berechnungen durch. Die Theorie verstehe ich schon, also das ich f'(x) = 0 setzen muss usw. aber bei den mir nun vorliegenden 2 Testaufgaben komme ich einfach nicht weiter. mhhhh, ich hoffe ihr könnt mir weiterhelfen. Ich verzweifle noch.

Liebe Grüße


1. Aufgabe:

Eine Hohlkugel soll bearbeitet werden, dass ein Zylinder mit möglichst großem Rauminhalt entsteht. Wie sind der Radius und die Höhe des Zylinders zu wählen?


2. Aufgabe:

Welche senkrechte, regelmäßige Pyramide mit einem Quadrat der Seitenlänge a als Grundfläche und der Seitenkante s hat den größten Rauminhalt?

So das wars auch schon, andere Aufgaben verstehe ich, aber diese Leider nicht. Sad

        
Bezug
Extremwertaufgaben, Hilfe.: zu Aufgabe 1
Status: (Antwort) fertig Status 
Datum: 01:00 Mo 28.11.2005
Autor: Loddar

Hallo cyberfreak,

[willkommenmr] !!



> Eine Hohlkugel soll bearbeitet werden, dass ein Zylinder
> mit möglichst großem Rauminhalt entsteht. Wie sind der
> Radius und die Höhe des Zylinders zu wählen?

Wie groß ist denn das Volumen eines Zylinders?

[mm] $V_{Zylinder} [/mm] \ = \ V(r,h) \ = \ G*h \ = \ [mm] \pi*r^2*h$ [/mm]



Dazu gehört folgende Oberfläche (= Materialverbrauch):

[mm] $O_{Zylinder} [/mm] \ = \ 2*G + M \ = \ [mm] 2*\pi*r^2 [/mm] + [mm] 2\pi*r*h$ [/mm]


Und zur Verfügung dieses Zylinders (an Material) steht uns ja exakt die Oberfläche der Kugel (mit dem Radius $R_$) :

[mm] $O_{Kugel} [/mm] \ = \ [mm] 4\pi*R^2$ [/mm]


[mm] $\Rightarrow$ $2\pi*r^2 [/mm] + [mm] 2\pi*r*h [/mm] \ = \ [mm] 4\pi*R^2$ [/mm]


Diese Gleichung können wir nun z.B. nach $h \ = \ ...$ auflösen und in die Volumen-Formel einsetzen. Damit erhalten wir unsere Zielfunktion $V(r)_$ , die nur noch von einer Variablen $r_$ abhängig ist.

Mit dieser Funktion nun die Extremwertberechnung (Nullstellen der 1. Ableitung etc.) durchführen.


Gruß
Loddar


Bezug
        
Bezug
Extremwertaufgaben, Hilfe.: zu Aufgabe 2
Status: (Antwort) fertig Status 
Datum: 01:08 Mo 28.11.2005
Autor: Loddar

Hallo!


> Welche senkrechte, regelmäßige Pyramide mit einem Quadrat
> der Seitenlänge a als Grundfläche und der Seitenkante s hat
> den größten Rauminhalt?

Volumen der Pyramide:

[mm] $V_{Pyramide} [/mm] \ = \ V(a,h) \ =\ [mm] \bruch{1}{3}*G*h [/mm] \ = \ [mm] \bruch{1}{3}*a^2*h$ [/mm]


Wenn wir nun einen Schnitt führen durch die Pyramide entlang der Grundflächen-Diagonale und durch die Pyramidenspitze, erhalten wir zunächst ein gleichschenkliges Dreieck.

Die Hälfte dieses Dreieckes stellt ein rechtwinkliges Dreieck dar, in dem natürlich der Satz des Pythagoras gilt:

[mm] $\left(\bruch{a*\wurzel{2}}{2}\right)^2 [/mm] + [mm] h^2 [/mm] \ = \ [mm] s^2$ [/mm]


Diese Gleichung nun umformen nach [mm] $a^2 [/mm] \ = \ ...$ und in die Volumenformel einsetzen [mm] $\Rightarrow$ [/mm] Zielfunktion $V(h)_$ [mm] $\Rightarrow$ [/mm] Extremwertberechnung ...


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de