www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Abiturvorbereitung" - Extremwertbeispiel (Hyperbel)
Extremwertbeispiel (Hyperbel) < Abivorbereitung < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abiturvorbereitung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertbeispiel (Hyperbel): Anregung/Lösung
Status: (Frage) beantwortet Status 
Datum: 11:41 Sa 03.05.2008
Autor: IlovePhiladelphia

Aufgabe
Welcher Punkt der Hyperbel [mm] 2x^{2}-3y^{2}= [/mm] 54 hat vom Punkt P (15/0) den kleinsten Abstand?

Lösung: [ A(9/6), B(9/-6) ]

Im Prinzip handelt es sich hierbei um ein Extremwertbeispiel mit dem Pythagoras als Zielfunktion. Da ich mir ja den kleinsten Abstand berechnen möchte, muss ich mWn eine Tangente an die Hyperbel legen. Diese kann ich mir zumindest mit der Berührbedingung [mm] d^{2}=a^{2}k^{2}-b^{2} [/mm] ausdrücken lassen. Rechnet man sich [mm] a^{2} [/mm] und [mm] b^{2} [/mm] aus der Hyberbel aus, dann erhält man für [mm] a^{2} [/mm] den Wert 18 und für [mm] b^{2} [/mm] den Wert 27. Diese setze ich dann in die Berührbedingung ein.

Zur gleichen Zeit stelle ich die Formel für den kleinsten Abstand (ich nenne die Variable mal G) mit Hilfe des Pythagoras auf. G = [mm] \wurzel{(15-x)^{2}+y^{2}}. [/mm] Das ist wohl zugleich meine Zielfunktion.

Weiters setzte ich [mm] d^{2}-Gleichung [/mm] in die quadrierte Geradengleichung ein und bekomme [mm] y^{2}=k^{2}x^{2}+18k^{2}-27. [/mm] Und diese wiederum in G [mm] \Rightarrow [/mm]

[mm] G^{2}= (15-x)^{2}+k^{2}x^{2}+18k^{2}-27 [/mm]

So das waren im Prinzip meine ersten Ansätze. Stimmen die bzw. wie gehe ich weiter?

btw: Ich habe in paar Tagen meine M-Abitur. Werde hier in diesem Forum wohl bis dahin noch öfters nachfragen. *g*

Ich wäre natürlich sehr, sehr dankbar, wenn mir jemand helfen könnte...

        
Bezug
Extremwertbeispiel (Hyperbel): Antwort
Status: (Antwort) fertig Status 
Datum: 13:12 Sa 03.05.2008
Autor: MathePower

Hallo IlovePhiladelphia,

> Welcher Punkt der Hyperbel [mm]2x^{2}-3y^{2}=[/mm] 54 hat vom Punkt
> P (15/0) den kleinsten Abstand?
>  
> Lösung: [ A(9/6), B(9/-6) ]
>  Im Prinzip handelt es sich hierbei um ein
> Extremwertbeispiel mit dem Pythagoras als Zielfunktion. Da
> ich mir ja den kleinsten Abstand berechnen möchte, muss ich
> mWn eine Tangente an die Hyperbel legen. Diese kann ich mir
> zumindest mit der Berührbedingung [mm]d^{2}=a^{2}k^{2}-b^{2}[/mm]
> ausdrücken lassen. Rechnet man sich [mm]a^{2}[/mm] und [mm]b^{2}[/mm] aus der
> Hyberbel aus, dann erhält man für [mm]a^{2}[/mm] den Wert 18 und für
> [mm]b^{2}[/mm] den Wert 27. Diese setze ich dann in die
> Berührbedingung ein.
>  
> Zur gleichen Zeit stelle ich die Formel für den kleinsten
> Abstand (ich nenne die Variable mal G) mit Hilfe des
> Pythagoras auf. G = [mm]\wurzel{(15-x)^{2}+y^{2}}.[/mm] Das ist wohl
> zugleich meine Zielfunktion.
>
> Weiters setzte ich [mm]d^{2}-Gleichung[/mm] in die quadrierte
> Geradengleichung ein und bekomme
> [mm]y^{2}=k^{2}x^{2}+18k^{2}-27.[/mm] Und diese wiederum in G
> [mm]\Rightarrow[/mm]
>  
> [mm]G^{2}= (15-x)^{2}+k^{2}x^{2}+18k^{2}-27[/mm]
>  
> So das waren im Prinzip meine ersten Ansätze. Stimmen die
> bzw. wie gehe ich weiter?

Von Berührung ist hier keine Rede.

Forme die Hyperbelgleichung nach y um, und setze sie in G ein.

>  
> btw: Ich habe in paar Tagen meine M-Abitur. Werde hier in
> diesem Forum wohl bis dahin noch öfters nachfragen. *g*

Viel Erfolg dabei.

>  
> Ich wäre natürlich sehr, sehr dankbar, wenn mir jemand
> helfen könnte...

Gruß
MathePower

Bezug
                
Bezug
Extremwertbeispiel (Hyperbel): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:02 Sa 03.05.2008
Autor: IlovePhiladelphia

Japp, habe das Ergebnis. Manchmal darf man einfach nicht zu kompliziert denken...:-p

Danke noch mal.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abiturvorbereitung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de