www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Extremwertberechnung
Extremwertberechnung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertberechnung: Frage
Status: (Frage) beantwortet Status 
Datum: 16:49 Do 08.09.2005
Autor: Skydiver

Hallo.

Ich stehe vor der Aufgabe für eine Funktion in vier unabhängigen Veränderlichen f(w,x,y,z) die lokalen Minima und Maxima unter zwei Nebenbedingungen g(w,x) und h(y,z) zu bestimmen.
Nun habe ich mir mit Hilfe von Lagrange Parametern die Werte der in Frage kommenden Stellen bestimmt.
Jetzt gilt es aber noch herauszufinden, um welche Art von Extremum es sich dabei handelt.
Hiefür habe ich mir laut dem Satz über die implizite Funktion aus den Nebenbedingungen dw/dx und dz/dy bestimmt.
Danach nehme ich an, ich hätte eine Fkt. die nur noch von x und y abhängig ist, [mm] f_1(x,y), [/mm] wobei ich die Funktion selbst eigentlich nicht benötige sondern nur deren 2. Ableitungen, um mittels der Jacobi Matrix die Art des Extremums feststellen zu können.
Nun gehe ich so vor, dass ich formal [mm] f_1 [/mm] nach x und y ableite, [mm] f_1_x [/mm] = [mm] f_w [/mm] * dw/dx + [mm] f_x. [/mm]
Danach wollte ich so weiter machen, dass ich hier nun meine vorhin berechneten dw/dx und dz/dy einsetze und anschließend die zweiten partiellen Ableitungen bilde.
Bei diesem Punkt bin ich mir jedoch nicht sicher, ob das tatsächlich so machbar ist.
Ist es vielleicht nötig sich w(x) und z(y) irgendwie zu bestimmen und diese dann in die ursprüngliche Glg. einzusetzen, oder reicht es dw/dx und dz/dy in die ersten Ableitungen einzusetzen??

Gibt es vielleicht auch noch eine andere Möglichkeit das zu bestimmen??

Vielen Dank für die Hilfe!

mfg.

        
Bezug
Extremwertberechnung: Hinweis
Status: (Antwort) fertig Status 
Datum: 18:09 Do 08.09.2005
Autor: MathePower

Hallo Skydiver,

> Ich stehe vor der Aufgabe für eine Funktion in vier
> unabhängigen Veränderlichen f(w,x,y,z) die lokalen Minima
> und Maxima unter zwei Nebenbedingungen g(w,x) und h(y,z) zu
> bestimmen.
>  Nun habe ich mir mit Hilfe von Lagrange Parametern die
> Werte der in Frage kommenden Stellen bestimmt.
>  Jetzt gilt es aber noch herauszufinden, um welche Art von
> Extremum es sich dabei handelt.
>  Hiefür habe ich mir laut dem Satz über die implizite
> Funktion aus den Nebenbedingungen dw/dx und dz/dy
> bestimmt.
>  Danach nehme ich an, ich hätte eine Fkt. die nur noch von
> x und y abhängig ist, [mm]f_1(x,y),[/mm] wobei ich die Funktion
> selbst eigentlich nicht benötige sondern nur deren 2.
> Ableitungen, um mittels der Jacobi Matrix die Art des
> Extremums feststellen zu können.
>  Nun gehe ich so vor, dass ich formal [mm]f_1[/mm] nach x und y
> ableite, [mm]f_1_x[/mm] = [mm]f_w[/mm] * dw/dx + [mm]f_x.[/mm]
> Danach wollte ich so weiter machen, dass ich hier nun meine
> vorhin berechneten dw/dx und dz/dy einsetze und
> anschließend die zweiten partiellen Ableitungen bilde.
>  Bei diesem Punkt bin ich mir jedoch nicht sicher, ob das
> tatsächlich so machbar ist.
>  Ist es vielleicht nötig sich w(x) und z(y) irgendwie zu
> bestimmen und diese dann in die ursprüngliche Glg.
> einzusetzen, oder reicht es dw/dx und dz/dy in die ersten
> Ableitungen einzusetzen??

die zweiten partiellen Ableitungen müssen erstmal formal bestimmt werden. Danach kannst Du die partiellen Ableitungen [mm]w_{x},\; w_{xx},\;z_{y},\;z_{yy}[/mm] einsetzen. Auch diese müssen zunächst formal berechnet werden.

>  
> Gibt es vielleicht auch noch eine andere Möglichkeit das zu
> bestimmen??

Ob der übliche Weg einfacher ist?

Betrachte die Funktion

[mm]r\left( {w,\;x,\;y,\;z} \right)\; = \;f\left( {w,\;x,\;y,\;z} \right)\; + \;\alpha \;g\left( {w,\;x} \right)\; + \;\beta \;h\left( {y,\;z} \right)[/mm]

Berechne hier die Matrix der zweiten partiellen Ableitungen. Diese Matrix muss definit sein. Betrachte dann die partiellen Ableitungen

[mm]r_{ww},\;r_{xx},\;r_{yy},\;r_{zz}[/mm]

Haben diese partiellen Ableitungen alle gleiches Vorzeichen, so liegt für positives Vorzeichen ein Minimum,  für negatives Vorzeichen ein Maximum vor.

Ich weiss nicht, ob das alles so stimmt, also alles ohne Gewähr.

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de