www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Extremwertbestimmung
Extremwertbestimmung < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:15 Fr 20.01.2012
Autor: SeimTime

Aufgabe
Extremwertbestimmung einer Funktion mit zwei Variablen und einer Nebenbedingung in Abhängigkeit einer weiteren Variablen (SIEHE LINK zu PDF)


Guten Tag!

Das hier ist meine erste Aufgabenstellung in diesem Forum, darum bitte ich um Nachsicht, falls ich irgendetwas Falsch mache. Sieht alles ein bisschen verwirrend aus.

Ich bin Student im 5. Semester BWL (Bachelor) und habe am kommenden Dienstag (24.1.12) meinen Drittversuch in Wirtschaftsmathematik und mein Verständnis für Mathematik ist leider mehr als begrenzt. Wie auch immer, mir bereitet nur noch ein Aufgabentyp Schwierigkeiten. Rein rechnerisch kein problem, das geht alles im Kopf,  nur mit der logik...

Es handelt sich um die Aufgabe 2 auf folgedem Blatt:

http://people.fh-landshut.de/~gleiss/psfiles/wim1_10/wim2l16.pdf

Der angegebene Lösungsweg ist von unserem Dozenten, jedoch für mich nicht wirklich nachvollziehbar.

Bei der Fallunterscheidung, ob die Variable k den Wert 1 , -1 oder ungleich 1 annimmt, setzt bei mir leider jedes Verständnis aus.

Fall 1: k = 1 und Fall 2: k = -1

Wieso kann man, ohne die zweite Ableitung nach jeweils X oder Y zu bilden, darauf schließen, dass die Funktion ein Minimum auf der angegeben Gerade hat?

Wenn ich die zweite Ableitung nach X , Y und überkreuz bilde, erhalte für jede Ableitung den selben Wert. Setze ich den wert dann in nachfolgenden notwendige Bedinung ein, erhalte ich den Wert "0"

f''xx(x,y) * f''yy(x,y) - [ f''xy(x,y) ]²  = 0

Wird der wert Null, so kann meines Wissens und meinen Unterlagen keine Aussage über den Extremwert getroffen werden. Wo wir wieder bei der Frage wären: Warum schließt mein Dozent hier auf ein Minimum auf der angegebenen Geraden? Ohne jegliche Ableitung zu bilden?


Freundliche Grüße, ich hoffe dass mit der Form reicht in der Hinsicht.
SeimTime

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Extremwertbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 04:47 Sa 21.01.2012
Autor: angela.h.b.


> Es handelt sich um die Aufgabe 2 auf folgedem Blatt:
>  
> http://people.fh-landshut.de/~gleiss/psfiles/wim1_10/wim2l16.pdf

Hallo,

[willkommenmr]

Nach Einsetzen von k=1 steht dort

[mm] f(x,y)=2(x-y-1)^2. [/mm]

Da der Term (x-y-2) quadriert wird, kann der Funktionswert f(x,y) keinesfalls negativ werden, der kleinste Funktionswert, der angenommen werden kann, ist f(x,y)=0.
Und wann wird der angenommen? Na, wenn in der Klammer eine 0 steht, wenn also x-y-1=0 <==> y=x+1.
Also sind alle Punkte, die auf dieser Geraden liegen, Minimalstellen von von f, z.B. die Punkte (17|18), (-7|-6) usw.

Daß die Funktion kein Maximum hat, sieht man auch sofort. Wenn man etwa y=0 setzt und dann das x beliebig groß werden läßt, wird natürlich auch der Funktionswert beliebig groß.

Viel Erfolg und
LG Angela

>  
> Der angegebene Lösungsweg ist von unserem Dozenten, jedoch
> für mich nicht wirklich nachvollziehbar.
>  
> Bei der Fallunterscheidung, ob die Variable k den Wert 1 ,
> -1 oder ungleich 1 annimmt, setzt bei mir leider jedes
> Verständnis aus.
>  
> Fall 1: k = 1 und Fall 2: k = -1
>  
> Wieso kann man, ohne die zweite Ableitung nach jeweils X
> oder Y zu bilden, darauf schließen, dass die Funktion ein
> Minimum auf der angegeben Gerade hat?
>  
> Wenn ich die zweite Ableitung nach X , Y und überkreuz
> bilde, erhalte für jede Ableitung den selben Wert. Setze
> ich den wert dann in nachfolgenden notwendige Bedinung ein,
> erhalte ich den Wert "0"
>  
> f''xx(x,y) * f''yy(x,y) - [ f''xy(x,y) ]²  = 0
>  
> Wird der wert Null, so kann meines Wissens und meinen
> Unterlagen keine Aussage über den Extremwert getroffen
> werden. Wo wir wieder bei der Frage wären: Warum schließt
> mein Dozent hier auf ein Minimum auf der angegebenen
> Geraden? Ohne jegliche Ableitung zu bilden?
>  
>
> Freundliche Grüße, ich hoffe dass mit der Form reicht in
> der Hinsicht.
>  SeimTime
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Bezug
                
Bezug
Extremwertbestimmung: thx
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:07 Sa 21.01.2012
Autor: SeimTime

Wow!

Das nenn ich mal eine gut erklärte Antwort. Da wär ich selber nie drauf gekommen. Vielen herzlichen Dank! Daumen Hoch²


Grüße,
Simon

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de