www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Extremwerte
Extremwerte < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:33 Mo 07.05.2007
Autor: sancho1980

Hallo,

ich habe ein Dreieck mit den Eckpunkten (0,0), [mm] (0,y_t) [/mm] und [mm] (x_t,0), [/mm] dessen Hypothenuse durch den Punkt (a,b) mit a,b>0 geht. Jetzt soll ich die Werte [mm] x_y [/mm] und [mm] y_y [/mm] bestimmen. Ich habe da raus: [mm] x_t=\bruch{at - b}{t} [/mm] und [mm] y_t=b [/mm] - at.

1. Ist das korrekt?

Jetzt soll ich als naechstes den Flaecheninhalt des Dreiecks bestimmen. Dabei hab ich raus:

f(x) = tx + y [mm] \Rightarrow [/mm] F(x) = [mm] \bruch{x_t^2}{2} [/mm] + [mm] y_tx_t [/mm]

2. Ist das (auch) korrekt?

Danach soll ich ermitteln, fuer welches t der Flaecheninhalt des Dreiecks minimal wird. Okay, dachte ich mir, die Flaeche ist ja jetzt nichts Anderes als eine Funktion nach t. Wenn ich jetzt davon die erste Ableitung bilde, bekomme ich F'(x) = f(x) - [mm] y_t [/mm] = tx = [mm] t(\bruch{at - b}{t}) [/mm] = at - b. Wenn ich das = 0 setze, dann bekomm ich die Extremwerte, denn da, wo der Anstieg = 0 ist, nimmt der Graph der abgeleiteten Funktion ein Extremum an. Aber wie erkenn ich, ob es ein Minimum oder Maximum ist? Ein Freund von mir mein, wenn die zweite Ableitung an dem Punkt negativ ist, dann ist es ein Maximum, und Wenn sie positiv ist, dann ist es ein Minimum. Stimmt das? Wenn ja, wie kann man sich das logisch erklaeren; also wie kann man das zeigen?

Danke und Gruss,

Martin

        
Bezug
Extremwerte: Rückfragen!
Status: (Antwort) fertig Status 
Datum: 18:23 Mo 07.05.2007
Autor: Loddar

Hallo Martin!


Wo kommt denn plötzlich der Parameter $t_$ her? Ist hier über den vorgegebenen Punkt $P \ ( \ a \ ; \ b \ )$ noch etwas mehr vorgegeben? Oder über die Achsenabschnitte [mm] $x_t$ [/mm] bzw. [mm] $y_t$ [/mm] ?

Von daher sind mir Deine Ausführungen nicht ganz schlüssig.
Bitte poste doch auch mal die vollständige Aufgabenstellung.


Den Flächeninhalt des (rechtwinkligen) Dreieckes kannst Du auch schneller und einfacher ohne Integralrechnung über die Flächenformel für Dreiecke bestimmen:

[mm] $A_{\Delta} [/mm] \ = \ [mm] \bruch{1}{2} \times \text{Kathete 1} \times \text{Kathete 2} [/mm] \ = \ [mm] \bruch{1}{2}*x_t*y_t [/mm] \ = \ ...$


Gruß
Loddar


Bezug
                
Bezug
Extremwerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:41 Mo 07.05.2007
Autor: sancho1980

Oh, entschuldige. Deswegen hat keiner geantwortet. Hatte vergessen zu erwähnen, dass der Anstieg der Hypothenuse durch t gegeben ist!

Bezug
        
Bezug
Extremwerte: ohne Integration
Status: (Antwort) fertig Status 
Datum: 22:19 Mo 07.05.2007
Autor: Loddar

Hallo Martin!


> Ich habe da raus: [mm]x_t=\bruch{at - b}{t}[/mm] und [mm]y_t=b[/mm] - at.

[ok]


> Jetzt soll ich als naechstes den Flaecheninhalt des Dreiecks
> bestimmen. Dabei hab ich raus:
>  
> f(x) = tx + y [mm]\Rightarrow[/mm] F(x) = [mm]\bruch{x_t^2}{2}[/mm] + [mm]y_tx_t[/mm]

Das kann ich jetzt nicht nachvollziehen, was Du da gerechnet hast.

Wende hier die Formel aus meiner obigen Antwort an:

$ [mm] A_{\Delta} [/mm] \ = \ [mm] A_{a;b}(t) [/mm] \ = \ [mm] \bruch{1}{2}\cdot{}x_t\cdot{}y_t [/mm] \ = \ ... $

Setze nun die beiden Terme für [mm] $x_t$ [/mm] und [mm] $y_t$ [/mm] ein ...

  

> Danach soll ich ermitteln, fuer welches t der Flaecheninhalt des
> Dreiecks minimal wird.

Hier nun mit der Funktion [mm] $A_{a;b}(t)$ [/mm] eine Extremwertberechnung durchführen.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de