www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Extremwerte
Extremwerte < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:04 Mo 25.05.2009
Autor: mathestuden

Aufgabe
Zu bestimmen die relativen und absoluten Extrema der Funktion[mm]f(x,y)=3x(1-y^2)-x^3[/mm] im Bereich [mm] x^2+y^2\le4[/mm].

Folgendes habe ich bisher gerechnet:

[mm]f(x,y)=3x(1-y^2)-x^3[/mm]

<=> [mm]f(x,y)=3x-3xy^2-x^3[/mm]

=> [mm] Dxf=3-3y^2-3x^2[/mm] und [mm]Dyf=-6xy[/mm]

=> [mm]\begin{pmatrix} 3-3y^2-3x^2 \\ -6xy \end{pmatrix}=\begin{pmatrix} 0 \\ 0 \\ \end{pmatrix}[/mm]

<=> [mm]\begin{pmatrix} x^2+y^2 \\ xy\end{pmatrix}=\begin{pmatrix} 1 \\ 0 \\ \end{pmatrix}[/mm]

Danach habe ich eine Fallunterscheidung gemacht.

Fall 1:

Wenn x=0

=> y=1
Fall 2:

Wenn y=0

=> x=1

Dann waere der 1.Fall ein relatives Extremum und der 2.Fall ein absolutes, weil ||f(1,0)||=2>||f(0,1)||=0

Ist meine Idee richtig?

Gruss

mathestudent


        
Bezug
Extremwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 16:12 Mo 25.05.2009
Autor: fred97


> Zu bestimmen die relativen und absoluten Extrema der
> Funktion[mm]f(x,y)=3x(1-y^2)-x^3[/mm] im Bereich [mm]x^2+y^2\le4[/mm].
>  Folgendes habe ich bisher gerechnet:
>  
> [mm]f(x,y)=3x(1-y^2)-x^3[/mm]
>  
> <=> [mm]f(x,y)=3x-3xy^2-x^3[/mm]
>  
> => [mm]Dxf=3-3y^2-3x^2[/mm] und [mm]Dyf=-6xy[/mm]
>
> => [mm]\begin{pmatrix} 3-3y^2-3x^2 \\ -6xy \end{pmatrix}=\begin{pmatrix} 0 \\ 0 \\ \end{pmatrix}[/mm]
>  
> <=> [mm]\begin{pmatrix} x^2+y^2 \\ xy\end{pmatrix}=\begin{pmatrix} 1 \\ 0 \\ \end{pmatrix}[/mm]
>  
> Danach habe ich eine Fallunterscheidung gemacht.
>  
> Fall 1:
>  
> Wenn x=0
>  
> => y=1

Nein, es folgt: $y = [mm] \pm [/mm] 1$




>  Fall 2:
>  
> Wenn y=0
>  
> => x=1



Nein, es folgt: $x = [mm] \pm [/mm] 1$

>  
> Dann waere der 1.Fall ein relatives Extremum und der 2.Fall
> ein absolutes, weil ||f(1,0)||=2>||f(0,1)||=0
>  
> Ist meine Idee richtig?



Nein, was sollen oben die Normstriche ?????


Tipp: Hessematrix

FRED

>  
> Gruss
>  
> mathestudent
>  


Bezug
                
Bezug
Extremwerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:25 Mo 25.05.2009
Autor: mathestuden

Also ich schaetze, dass das plusminus wegen dem wurzelziehen kommt und wichtig ist um deine Hesse Matrix aufzuspannen. Ist die Hessematrix die approximierte lineare Abbildung von f(x,y) und wie unterscheide ich dann, ob das Extremum lokal oder relativ ist?

Gruss

mathestudent

Bezug
                        
Bezug
Extremwerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:28 Mo 25.05.2009
Autor: fred97


> Also ich schaetze, dass das plusminus wegen dem
> wurzelziehen kommt

Ja


> und wichtig ist um deine Hesse Matrix


die gehört nicht mir  ....

>

> aufzuspannen. Ist die Hessematrix die approximierte lineare
> Abbildung von f(x,y)?


Nein. Den Begriff Hessematrix hattet Ihr sicher. Schau noch mal nach

FRED

Bezug
                                
Bezug
Extremwerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:40 Di 26.05.2009
Autor: mathestuden

Also ich habe mal in meinem Skript geschaut. Dort ist mit keinem Wort die Hesse-Matrix erwähnt (also nur indirekt). Aber ich habe mal bei Wikipedia geschaut unter dem besagten Stichwort. Muss ich die Determinante für die Matrix als hinreichendes Kriterium nehmen oder die Eigenwerte? Muss ich ableiten bis ich 0 heraus bekomme? Inwiefern muss ich meine Fallunterscheidung einbringen? Mir ist das Verfahren nicht ganz klar.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de