www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Extremwerte
Extremwerte < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwerte: Hoch- und Tiefpunkt
Status: (Frage) beantwortet Status 
Datum: 14:53 Di 14.02.2012
Autor: MadleineS

Aufgabe
geben Sie Minimum und Maximum der Funktion z(x,y) = x + y unter der Nebenbedingung [mm] x^2+y^2=1 [/mm] an.

Hallo :)

bei dieser Aufgabe bin ich tatsächlich am verzweifeln, dabei kann sie doch gar nicht so schwer sein. Was ich weiß ist, dass ich zunächst die 1. Ableitung beider, also x und y bilden muss (getrennt von einander) und die beiden dann = 1 setze. Aber dann kommt jeweils 1/2 raus und das ergibt keinen Sinn. Die Ergebnisse selbst habe ich auch da. Deswegen weiß ich, dass ich hier einen Fehler drin habe :( Bitte helft mir ich schreibe in einer Woche die Klausur zum Thema! Danke.

... diesen Text hier...

        
Bezug
Extremwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 15:15 Di 14.02.2012
Autor: MathePower

Hallo MadleineS,

> geben Sie Minimum und Maximum der Funktion z(x,y) = x + y
> unter der Nebenbedingung [mm]x^2+y^2=1[/mm] an.
>  Hallo :)
>
> bei dieser Aufgabe bin ich tatsächlich am verzweifeln,
> dabei kann sie doch gar nicht so schwer sein. Was ich weiß
> ist, dass ich zunächst die 1. Ableitung beider, also x und
> y bilden muss (getrennt von einander) und die beiden dann =
> 1 setze. Aber dann kommt jeweils 1/2 raus und das ergibt
> keinen Sinn. Die Ergebnisse selbst habe ich auch da.
> Deswegen weiß ich, dass ich hier einen Fehler drin habe :(
> Bitte helft mir ich schreibe in einer Woche die Klausur zum
> Thema! Danke.
>  


Hier musst Du die []Lagrange'sche Multiplikatorenmethode anwenden,
die zunächst die Bildung der Funktion

[mm]L\left(x,x,\lambda\right)=x+y-\lambda*\left(x^{2}+y^{2}-1\right)[/mm]

verlangt.

Davon sind die partiellen Ableitungen nach [mm] x,y,\lambda [/mm] zu bilden
und diese jeweils 0 zu setzen:

[mm]\bruch{\partial L\left(x,y,\lambda\right)}{\partial x}=0[/mm]

[mm]\bruch{\partial L\left(x,y,\lambda\right)}{\partial y}=0[/mm]

[mm]\bruch{\partial L\left(x,y,\lambda\right)}{\partial \lambda}=0[/mm]

Dieses Gleichungssystem ist dann nach [mm]x,y,\lambda[/mm] aufzulösen.


> ... diesen Text hier...


Gruss
MathePower

Bezug
                
Bezug
Extremwerte: Ableitungen usw.
Status: (Frage) beantwortet Status 
Datum: 15:43 Di 14.02.2012
Autor: MadleineS

Danke für die schnelle Antwort... ich habe mich auch gleich daran versucht und bekomme die partiellen Ableitungen irgendwie nicht hin :( ich mach das gerade zum ersten mal, da ich in der Übung zum Thema nicht anwesend war.
Könntest du mir bitte noch ein wenig ausführlicher schreiben, was ich genau tun muss und wie das funktoniert, bitte?

Bezug
                        
Bezug
Extremwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 15:53 Di 14.02.2012
Autor: schachuzipus

Hallo nochmal,


> Danke für die schnelle Antwort... ich habe mich auch
> gleich daran versucht und bekomme die partiellen
> Ableitungen irgendwie nicht hin :( ich mach das gerade zum
> ersten mal, da ich in der Übung zum Thema nicht anwesend
> war.
>  Könntest du mir bitte noch ein wenig ausführlicher
> schreiben, was ich genau tun muss und wie das funktoniert,
> bitte?

?? Ausführlicher geht's ja kaum noch.

Mathepower hat dir nen link geschickt und auch noch das zu lösende Gleichungssystem aufgeschrieben.

Noch mehr wäre vorrechnen und das tun wir hier nicht.

Zeige uns deine Ansätze zu den partiellen Ableitungen.

Leitest du nach einer Variable ab, so sind die anderen als konstant zu betrachten.

Bsp. [mm]h(x,y)=x^2\cdot{}y+3y-4[/mm]

Dann ist [mm]\frac{\partial h}{\partial x}(x,y)=2xy[/mm] (y ist bzgl. x konstant)

Und [mm]\frac{\partial h}{\partial y}(x,y)=x^2+3[/mm] (x ist bzgl. y konstant, also [mm]x^2[/mm] multiplikative Konstante)


Gruß

schachuzipus


Bezug
                
Bezug
Extremwerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:12 Di 14.02.2012
Autor: MadleineS

@Mathepower: Vielen Dank für die schnelle Reaktion und den Link. Den hatte ich erst gar nicht gesehen. Er hat mir jetzt aber echt auf die Sprünge geholfen.
@Schachuzipus: Danke auch für deine Hilfe. Und ich bin mir selbst schon bewusst, dass ich hier keine Kenntnisse zum Thema habe und mich dem entsprechend unwissend anstelle. Aebr wenn man gewisse Rechnungen eben nicht allein schafft, braucht man auch mal jemanden, der einem vorgibt was zu tun ist, damit der Knoten für kommende Aufgaben platzt. Ein Verweis auf den Link hätte an der Stelle auch gereicht.  ("vorrechnen tun wir nicht") Danke.

Bezug
        
Bezug
Extremwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 15:41 Di 14.02.2012
Autor: schachuzipus

Hallo MadleineS,

ich denke, du kannst alternativ auch ohne Lagrange auskommen...


> geben Sie Minimum und Maximum der Funktion z(x,y) = x + y
> unter der Nebenbedingung [mm]x^2+y^2=1[/mm] an.
>  Hallo :)
>
> bei dieser Aufgabe bin ich tatsächlich am verzweifeln,
> dabei kann sie doch gar nicht so schwer sein. Was ich weiß
> ist, dass ich zunächst die 1. Ableitung beider, also x und
> y bilden muss (getrennt von einander) und die beiden dann =
> 1 setze. Aber dann kommt jeweils 1/2 raus und das ergibt
> keinen Sinn. Die Ergebnisse selbst habe ich auch da.
> Deswegen weiß ich, dass ich hier einen Fehler drin habe :(
> Bitte helft mir ich schreibe in einer Woche die Klausur zum
> Thema! Danke.

Betrachte die Funktion [mm]g(x,y)=x^2+y^2-1[/mm], die dir deine Nebenbed. beschreibt:

Es gilt [mm]g(x,y)=0\gdw x^2+y^2=1[/mm]

Löse $g(x,y)$ nach [mm]y[/mm] auf und setze in [mm]f[/mm] ein, dann hast du eine Extremwertaufgabe in einer Variable, die du nach Schulmethoden verarzten kannst ...

>  
> ... diesen Text hier...

Gruß

schachuzipus


Bezug
                
Bezug
Extremwerte: 2. Antwort
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:50 Di 14.02.2012
Autor: MadleineS

So versuchte ich es vorher schon die ganze Zeit, aber irgendwie stelle ich mich so doof an, dass immer nur 0 oder - [mm] \wurzel{1} [/mm] oder 1/2 herauskommen. Aber es soll doch - [mm] \wurzel{2} [/mm] und + [mm] \wurzel{2} [/mm] hauskommen! Ich raffe das nicht.

Bezug
                        
Bezug
Extremwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 16:04 Di 14.02.2012
Autor: angela.h.b.


> So versuchte ich es vorher schon die ganze Zeit, aber
> irgendwie stelle ich mich so doof an, dass immer nur 0 oder
> - [mm]\wurzel{1}[/mm] oder 1/2 herauskommen. Aber es soll doch -
> [mm]\wurzel{2}[/mm] und + [mm]\wurzel{2}[/mm] hauskommen! Ich raffe das
> nicht.

Hallo,

wenn wir Dir helfen sollen, müßtest Du mal vorrechnen.
Nur wenn wir Deine Fehler sehen, können wir Dir doch sagen, was Du falsch machst!

LG Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de