www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Extremwerte mit Nebenbedingung
Extremwerte mit Nebenbedingung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwerte mit Nebenbedingung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 14:06 Fr 11.03.2011
Autor: Barbidi

Aufgabe
Lage und Funktionswerte der relativen Extrema mit Nebenbedingung:
f(x,y)=x+y mit Nebenbedingung:
[mm] x^2=1-y^2 [/mm]

Moin,
ich hab eine kleine Frage zu dieser Aufgabe.
Und zwar möchte ich mal wieder wissen ob es ein Minimum oder Maximum ist. Hier mein Vorgehen. Ich habe die Lagransche Multiplikation benutzt und kam auf 2 relative Extrema bei P1(Wurzel 1/2 ; Wurzel 1/2) Und das ganze auch nochmal mit P2(- Wurzel 1/2; - Wurzel 1/2) In die Funktion eingesetzt und kam dann auf die Funktionswerte +/- 1,4142.

Nun habe ich überlegt kann ich doch mal schauen ob es auch mini oder maxima sind. Dafür habe ich die Nebenbedingung umgeformt zu [mm] x=(1-y^2)^0.5 [/mm] und dann in die Funktion eingesetzt. Beim ersten Ableiten habe ich dann die bestätigung bekommen,  dass mein ergebnis richtig sein müsst das ich ebenfalls auf +/- Wurzel 0.5 kam. Dann habe ich die 2te Ableitung gebilet und  y dann eingesetzt. ich kam beide male auf -2,82... Darauß würde ich schließen , dass es in beiden fällen ein Maxima ist. Ist diese Überlegung am ende richtig?

Danke im Vorraus.


        
Bezug
Extremwerte mit Nebenbedingung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:46 Fr 11.03.2011
Autor: kamaleonti

Hallo,
> ich hab eine kleine Frage zu dieser Aufgabe.
> Und zwar möchte ich mal wieder wissen ob es ein Minimum oder Maximum ist. Hier mein Vorgehen. Ich habe die Lagransche Multiplikation benutzt und kam auf 2 relative Extrema bei P1(Wurzel 1/2 ; Wurzel 1/2) Und das ganze auch nochmal mit P2(- Wurzel 1/2; - Wurzel 1/2) In die Funktion eingesetzt und kam dann auf die Funktionswerte +/- 1,4142.

Das ist dann die z Koordinate der Punkte!
[mm] P_1 (\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, \sqrt{2}) [/mm]

> Nun habe ich überlegt kann ich doch mal schauen ob es auch
> mini oder maxima sind. Dafür habe ich die Nebenbedingung
> umgeformt zu [mm]x=(1-y^2)^0.5[/mm] und dann in die Funktion
> eingesetzt.

Das kannst du gleich am Anfang machen.

> Beim ersten Ableiten habe ich dann die
> bestätigung bekommen,  dass mein ergebnis richtig sein
> müsst das ich ebenfalls auf +/- Wurzel 0.5 kam.

Sicher?
Bei mir kommt nur die positive Lösung [mm] \frac{\sqrt{2}}{2}=\frac{1}{\sqrt{2}} [/mm] als Extremstelle von [mm] g(y)=y+\sqrt{1-y^2} [/mm] in Frage.

Das Problem liegt bei der Umstellung [mm] x^2+y^2=1 \Rightarrow |x|=\sqrt{1-y^2}. [/mm]
Beachte den Betrag. Das andere Extremum findest du durch Ableiten der zweiten Funktion [mm] h(y)=y-\sqrt{1-y^2}. [/mm] Das ist im Prinzip analog.

> Dann habe ich die 2te Ableitung gebilet und  y dann eingesetzt. ich
> kam beide male auf -2,82... Darauß würde ich schließen ,
> dass es in beiden fällen ein Maxima ist. Ist diese
> Überlegung am ende richtig?

Nein. Nur [mm] P_1 [/mm] ist ein Maximumpunkt.

>  
> Danke im Vorraus.
>  

Gruß

Bezug
                
Bezug
Extremwerte mit Nebenbedingung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 14:52 Fr 11.03.2011
Autor: Barbidi

OK das habe ich alles nachvollziehen könnnen, und was machst du mit P2 dann wenn es keine Maxima ist? <Fällt es einfach raus? wenn ja warum?

Danke nochmal

Bezug
                        
Bezug
Extremwerte mit Nebenbedingung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:53 Fr 11.03.2011
Autor: kamaleonti


> OK das habe ich alles nachvollziehen könnnen, und was
> machst du mit P2 dann wenn es keine Maxima ist? <Fällt es
> einfach raus? wenn ja warum?

[mm] P_2 [/mm] ist ein Minimumpunkt. Rechne mal nach.

>  
> Danke nochmal

Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de