www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Extremwertproblem
Extremwertproblem < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertproblem: richtiger Ansatz?
Status: (Frage) beantwortet Status 
Datum: 18:38 Mi 06.09.2006
Autor: matheloserin

Aufgabe
Welche zylindrische Dose mit dem Oberflächeninhalt von 1dmhoch2 hat das gröste volumen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
Hallo leute!!!!
Also meine zielfunktion ist ja V= pi*rhoch2*h------muss maxinmal werden!!
dann brauch ich noch eine nebenbedinung...und zwar den oberflächeinhalt oder? das ist doch O= 2*pi*r(r*h) oder??und ich hätte noch eine frage...ist ein dmhoch2 =100cm? nach was löse ich am besten auf um meeine hauptbedining zu füllen? nach r oder nach h?


        
Bezug
Extremwertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 18:53 Mi 06.09.2006
Autor: M.Rex

Hallo Dalia

Dein Grundansatz ist vollkommen korrekt.

Es gilt:

V(r,h) = [mm] \pi [/mm] r² h.

Deine Formel für die Oberfläche ist aber falsch:
Es gilt O = [mm] \red{2} \underbrace{\pi r²}_{G, hier ein Kreis} [/mm] + [mm] \underbrace{2\pi r h}_{M; M = u_{Kreis} * h_{Zylinder}} [/mm]
Die Oberfläche ist ja mit 1 dm² = 100 cm² gegeben, also gilt.
Ich rechne aber mal in dm² bzw.dm, dann ergibt sich das Volumen in Litern (1 Liter =1 dm³)

1 = [mm] \red{2} \pi [/mm] r² + 2 [mm] \pi [/mm] r h
[mm] \gdw [/mm] h = [mm] \bruch{1- \red{2} \pi r²}{2 \pi r} [/mm]

Das ganze mal in die Volumenformel eingesetzt, ergibt:

V(r) = [mm] \pi [/mm] r² [mm] \bruch{1- \red{2}\pi r²}{2 \pi r} [/mm] = [mm] \bruch{\pi r² (1-\red{2}\pi r²)}{2 \pi r} [/mm] = [mm] \bruch{\pi r² - \red{4}\pi²r^{4}}{2\pi r} [/mm] = [mm] \bruch{r- \red{4}\pi r³}{2} [/mm]
= [mm] \bruch{1}{2} [/mm] (r- [mm] \red{4}\pi [/mm] r³).

Von diese Funktion musst du jetzt den Hochpunkt bestimmen.
Also Ableitung bilden, usw...

Hilft das weiter?

Marius

Ach ja: Wenn du den Formeleditor benutzt, wird das ganze übersichtlicher und dir wird eher geholfen.



Bezug
                
Bezug
Extremwertproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:21 Mi 06.09.2006
Autor: matheloserin

beim kürzen..ist glaub ich ein fehler unterlaufen....pi*rhoch2-pi*rhoch2*hoch4/2pi*r=  r-pi*rhoch2*rhoch4/2

Bezug
                
Bezug
Extremwertproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:32 Mi 06.09.2006
Autor: Zwerglein

Hi, M.Rex,

zur Oberfläche der Dose gehört Boden UND Deckel!

Daher: [mm] 2*r^{2}*\pi [/mm] !!

mfG!
Zwerglein

Bezug
                        
Bezug
Extremwertproblem: Sorry
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:35 Mi 06.09.2006
Autor: M.Rex

Habt recht, aber das Prinzipist ja korrekt und sollte klar sein.

Marius

Bezug
                                
Bezug
Extremwertproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:43 Mi 06.09.2006
Autor: Zwerglein

Hi, M.Rex,

aber dann korrigier' doch bitte Deine Antwort!

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de