www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Extremwertproblem
Extremwertproblem < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:35 So 10.09.2006
Autor: essence

Aufgabe
Aus einem rechteckigen Stück Blech gegebener Länge und der gegebenen Breite 49cm soll eine gleich lange Röhre mit möglichst großem, rechteckigem Querschnitt hergestellt werden.

Kann mir da jemand eine ausführliche Rechnung zu machen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Extremwertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 20:58 So 10.09.2006
Autor: M.Rex

Hallo Annika

> Aus einem rechteckigen Stück Blech gegebener Länge und der
> gegebenen Breite 49cm soll eine gleich lange Röhre mit
> möglichst großem, rechteckigem Querschnitt hergestellt
> werden.
>  Kann mir da jemand eine ausführliche Rechnung zu machen?

>

Ich versuche es, werde dir aberKEINE Komplettlösing anbieten. dazu ist das Forum hier nicht gedacht.

Die zu konstuiernde Röhre  hat den Querschnittsfläche A = a * b.
Jetzt weisst du, dass das Rechteck zu der Röhre "gerollt" werden soll, und zwar so, dass die 49 cm lange Seite den Umfang der Röhre bilden soll
(Tipp: Nimm dir mal nen Blatt Papier und versuche, selber solch eine Röhre zu bauen.)
Zurück zu unserem Beispiel. Es gilt jetzt ja: 2a+2b = 49 [mm] \Rightarrow [/mm] a = [mm] \bruch{49-2b}{2} [/mm]

Also kann ich jetzt die Querschnitsfläche umschreiben.

A = a *b = b [mm] (\bruch{49-2b}{2}) [/mm] = [mm] \bruch{49b}{2} [/mm] - b².

Jetzt kannst du hiervon den Hochpunkt bestimmen. Entweder per Ableitung, oder mit Hilfe der Scheitelpunktform.

Dieser liegt bei ca 12 cm.

Marius


Bezug
                
Bezug
Extremwertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:45 Di 09.10.2007
Autor: times

A = a *b = b ((49-2b)/2) das verstehe ich ja wie das zu stande kommt aber ich habe momentan einen totalen Blackout und kann mir absolut nicht erklären wie du auf [mm] (49b/2)-b^2 [/mm] kommst.

kann mir villt jemand helfen, alles andere kein Problem, weiter gerechnet habe ich auch schon und funktioniert auch nur ich will jeden Schritt verstanden haben, vielen Dank

Gruss Tim

Bezug
                        
Bezug
Extremwertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 17:53 Di 09.10.2007
Autor: angela.h.b.


> A = a *b = b ((49-2b)/2) das verstehe ich ja wie das zu
> stande kommt aber ich habe momentan einen totalen Blackout
> und kann mir absolut nicht erklären wie du auf [mm](49b/2)-b^2[/mm]
> kommst.

Hallo,

Du meinst diesen Schritt:
b $ [mm] (\bruch{49-2b}{2}) [/mm] $ = $ [mm] \bruch{49b}{2} [/mm] $ - b².

Es ist

b [mm] (\bruch{49-2b}{2}) =b(\bruch{49}{2}-\bruch{2b}{2})=b(\bruch{49}{2}-b)= b*\bruch{49}{2} [/mm] - [mm] b*b=\bruch{49b}{2} [/mm] - b².

Gruß v. Angela

Bezug
                                
Bezug
Extremwertproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:05 Di 09.10.2007
Autor: times

Super vielen Dank für die Mühe find ich klasse, uiui gar nicht schwer aber weiß auch nicht ich glaub da wär ich nicht mehr drauf gekommen ... vielen Dank nochmal

Bezug
                
Bezug
Extremwertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:11 Mi 10.10.2007
Autor: daniel_90

Hallo, ich bin ein wenig durcheinander, denn einmal sagst du, dass die 49 cm lange Seite den Umfang bilden soll, also dass eine von den Seiten 49 cm lang ist.
Dann aber nimmst du die 49 cm als Umfang für das ganze Rechteck.
Hab ich das irgendwie falsch verstanden?
Danke schon vorweg.> Hallo Annika


Bezug
                        
Bezug
Extremwertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 21:41 Mi 10.10.2007
Autor: M.Rex

Hallo Daniel.

> Hallo, ich bin ein wenig durcheinander, denn einmal sagst
> du, dass die 49 cm lange Seite den Umfang bilden soll, also
> dass eine von den Seiten 49 cm lang ist.

Nein, du hast einen Umfang von 49 cm für das gesamte Rechteck, das den Rahmen bildet. Die Kante des Blechs, das zu einen Rohr gebogen wird, wird zu einem Rechteck gebogen. Da die Länge der Blechkante jetzt aber die komplette Öffnung umfasst, hat diese nun einen Umfang von 49 cm

>  Dann aber nimmst du die 49 cm als Umfang für das ganze
> Rechteck.
>  Hab ich das irgendwie falsch verstanden?
>  Danke schon vorweg.> Hallo Annika

>  

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de