www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Extremwertproblem
Extremwertproblem < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertproblem: Tipp
Status: (Frage) beantwortet Status 
Datum: 22:54 Sa 29.05.2010
Autor: Scotti

Aufgabe
Ein quaderförmiger, oben offener Container soll halb so hoch wie breit sein und ein Volumen von [mm] 108m^3 [/mm] besitzen.
Welche Maße muss der Container erhalten,damit der Materialverbrauch minimal wird?

Also
Die Formel für das Volumen eines Quaders ist:
V=a*b*c
da aber eine Seite fehlt würde ich sagen:
V=a*b*c-a*b
das wäre dann die Hauptbedingung wie lauter aber die Nebenbedingung ein Tipp wäre toll und wenn man meine andere Frage beantworten könnte, bzw sagen könnte ob sie richtig ist:)

Vielen Dank
Scotti

        
Bezug
Extremwertproblem: Hauptbedingung
Status: (Antwort) fertig Status 
Datum: 23:12 Sa 29.05.2010
Autor: Loddar

Hallo Scotti!


Dass der Container oben offen ist, sagt doch gar nichts über das Volumen aus.

Du musst für die Hauptbedingung die Oberflächenformel aufstellen mit:
$$O \ = \ a*b+2*a*c+2*b*c$$

Gruß
Loddar


Bezug
                
Bezug
Extremwertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:30 So 30.05.2010
Autor: Scotti

Ohhh DAnke
Ja und die Nebenbedingung?
[mm] 108m^3=a*b*c [/mm] nicht weil dann das mit der einschränkung fehlt .

Bezug
                        
Bezug
Extremwertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 00:35 So 30.05.2010
Autor: pythagora

Guten Abend,
wenn du mit "einschränkung" die sache mit halb so hoch wie breit meinst, dann kannst du das ja noch mit einbauen. (Ich weiß jetzt nicht womit du jeweilt höhe reite länge bezeichnest, aber du kannst die buchstaben ja auch in abhängigkei von einander schreiben: z.b. x dreimal so groß wie y ---> x=3y... oki??

LG
pythagora

Bezug
                                
Bezug
Extremwertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:38 So 30.05.2010
Autor: Scotti

Also wenn ich V=a*b*c habe
und c die Höhe ist kann ich sagen b=2c und somit
V=a*b*2c das ist falsch oder?

Bezug
                                        
Bezug
Extremwertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 00:42 So 30.05.2010
Autor: MontBlanc

Hallo,

er soll halb so hoch wie breit sein. Die grundfläche ist quadratisch, ergo sind breit und tiefe gleich, nennen wir das mal a.

Jetzt soll da ganze halb so hoch wie breit sein, das heißt $ [mm] \bruch{a}{2}=c \Rightarrow [/mm] a=2*c $ du kannst das volumen also schreiben als:

[mm] V=a*a*\bruch{a}{2}=\bruch{a^3}{2} [/mm]

LG

Bezug
                                                
Bezug
Extremwertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:50 So 30.05.2010
Autor: Scotti

Das war sehr hilfreich.
So wenn ich das nach a auflöse bekomm ich 6 raus.
das in die Hauptbedingung eingesetzt komm ich auf
HB:6b+12c+2bc
aber da sind 2 Unbekannte hilft mir hier vllt das Lineare Gleichungssystem?
Danke
Scotti


Bezug
                                                        
Bezug
Extremwertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 00:53 So 30.05.2010
Autor: MontBlanc

Hallo,

verzeih, aber meine Antwort war falsch. Ich habe nicht richtig gelesen, da stand nicht quadratisch, sondern quader...

Daher nochmal:

Du hast die brei a, die tiefe b und die höhe c , halb so hoch wie breit heißt dann dass [mm] c=\bruch{a}{2} \Rightarrow V=a*b*\bruch{a}{2} [/mm] .

Entschuldige nochmal. Jetzt sollte deine Gleichungssystem auch funktionieren.

LG

Bezug
                                                                
Bezug
Extremwertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:10 So 30.05.2010
Autor: Scotti

So und wieder mal ein Problem
ich hab alles umgestellt und die erste ableitung gemacht die bei mir wie folgt lautet:
[mm] A´=648a^2+868a [/mm] stimmts und nach a aufgelöst komm ich auf -1.34 und das muss flasch sein <---- negatives Vorzeichen

Bezug
                                                                        
Bezug
Extremwertproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:35 So 30.05.2010
Autor: pythagora

hmmm. wie/was hast du dnn genau gerechnet??

Bezug
                                                                        
Bezug
Extremwertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 01:41 So 30.05.2010
Autor: leduart

Hallo
Du musst schon deinen Rechenweg vorführen, wie du auf dein falsches A kommst kann man ja nicht raten. Dass es falsch ist ist sicher.
Gruss leduart

Bezug
                                                                        
Bezug
Extremwertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:50 So 30.05.2010
Autor: Scotti

Okay ich habe die Nebenbedingung nach b auf gelöst und
[mm] b=\bruch{216}{a^2} [/mm] raus
Das in die Hb eingesetzt und dann vereinfacht
Zeilfunktion:
[mm] A=216*a^3+432*a^2*c+2*a^3*c [/mm]
1:Ableitung
[mm] A´=648*a^2+864*a +6*a^2 [/mm]
das null gesetzt und naja irgendwo muss da ja der Fehler sein


Bezug
                                                                                
Bezug
Extremwertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 01:55 So 30.05.2010
Autor: leduart

Hallo
Dein A ist falsch, was du schon daran siehst, wenn a in m ist hat deine Fläche [mm] m^3 [/mm]
Schreib a mal mit a,b,c hin, dann setz c=a/2, [mm] b=216m^3/a^2 [/mm] ein.
Dann kommt was anderes raus.
Gruss leduart

Bezug
                                                                                        
Bezug
Extremwertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:05 So 30.05.2010
Autor: Scotti

Dann bekomm ich als Zielfunktion:
[mm] A=\bruch{864m^3*a}{2*a^2}+a^2 [/mm]
richitg?

Bezug
                                                                                                
Bezug
Extremwertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 09:24 So 30.05.2010
Autor: angela.h.b.


> Dann bekomm ich als Zielfunktion:
>  [mm]A=\bruch{864m^3*a}{2*a^2}+a^2[/mm]
>  richitg?

Hallo,

ja.

Gruß v. Angela


Bezug
                                                                                                        
Bezug
Extremwertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:04 So 30.05.2010
Autor: Scotti

So und wenn ich das dann ableite komm ich auf

[mm] A´=\bruch{864*m^3*a}{-4*a^3}+2*a [/mm]
Wenn es falsch ist helft mich bitte nochmal zu erklären wie ich auf die richtige ableitung komme danke :)

Bezug
                                                                                                                
Bezug
Extremwertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 12:47 So 30.05.2010
Autor: leduart

HALLO
Fast richtig, aber noch falsch. kürze das a im ersten Ausdruck und differenziere dann!
Du hast das a im Zähler wie ne Konstante behandelt.
Ausdrücke IMMER erst vereinfachen, dann losrechnen.
gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de