www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Extremwertprobleme
Extremwertprobleme < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertprobleme: allgemeine herangehensweise
Status: (Frage) beantwortet Status 
Datum: 18:39 Di 19.04.2005
Autor: reya

Hallo Leute,

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

ich hab ein problem mit extremwertprobleme, da ich aktuell kein beispiel mehr finde, um es für mich selbst erschließbar zu machen.

am beispiel:

In einer Pyramide soll ein kugelförmiger Behälter gelagert werden. (quadratisch, a=6cm, h=6 __ originalangaben sind mit vektorrechnung zu erschließen gewesen) Welchen Radius kann dieser Behälter höchstens haben ?

es geht mir da vor allem um den ansatz und um die formelfindung, die ich ableiten und etc. muss.

danke im voraus. :)

        
Bezug
Extremwertprobleme: Antwort
Status: (Antwort) fertig Status 
Datum: 19:00 Di 19.04.2005
Autor: Max


> Hallo Leute,

Hallo Stefan,


dir ein herzliches
[willkommenmr]



> ich hab ein problem mit extremwertprobleme, da ich aktuell
> kein beispiel mehr finde, um es für mich selbst
> erschließbar zu machen.
>  
> am beispiel:
>  
> In einer Pyramide soll ein kugelförmiger Behälter gelagert
> werden. (quadratisch, a=6cm, h=6 __ originalangaben sind
> mit vektorrechnung zu erschließen gewesen) Welchen Radius
> kann dieser Behälter höchstens haben ?

Naja, aus einer Skizze kann man doch entnehmen, dass der Mittelpunkt $M$ diese kugelförmigen Behälters von allen Seitenflächen den gleichen Abstand haben muss und dieser maximal sein muss. Aus Symmetriegründen reicht es genau eine Seitenfläche $S$ und die Grundfläche $G$ zu betrachten.

$r=d(M;G) = d(M;S)$ muss dann maximal werden. Den Punkt $M$ kann man hoffentlich so legen, dass er nur von einer Variablen abhängt, zB $M(0|0|z)$.

  
Gruß Max

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de