www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - FF mod 11 = 0... hausgemacht
FF mod 11 = 0... hausgemacht < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

FF mod 11 = 0... hausgemacht: Name für Formel?
Status: (Frage) beantwortet Status 
Datum: 17:37 Mo 13.11.2006
Autor: gregsn

Basierend auf der Erkenntnis, dass 9999 durch 11 teilbar ist, hexFFFFFFFF im HEXsystem durch hex11 etc, habe ich mir folgende Formel zusammengebaut:

[mm] $b^{ck}-1 \equiv 0 (mod \sum_{i=0}^{c-1} b^i)$ mit $b, k \in \mathbb{N}_{0}, c \in \mathbb{N}$ [/mm]


Ist diese Formel bekannt, bzw. welchen Namen trägt sie?

Vielen Dank, Sebastian

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
FF mod 11 = 0... hausgemacht: Ein alter Hut
Status: (Antwort) fehlerhaft Status 
Datum: 15:36 Di 14.11.2006
Autor: moudi


> Basierend auf der Erkenntnis, dass 9999 durch 11 teilbar
> ist, hexFFFFFFFF im HEXsystem durch hex11 etc, habe ich mir
> folgende Formel zusammengebaut:
>  
> [mm] $b^{ck}-1 \equiv 0 (mod \sum_{i=0}^{c-1} b^i)$ mit $b, k \in \mathbb{N}_{0}, c \in \mathbb{N}$ [/mm]
>  
>
> Ist diese Formel bekannt, bzw. welchen Namen trägt sie?

Hallo Sebastian

Die rechte Seite ist eine geometrische Reihe: [mm] $\sum_{i=0}^{c-1} b^i=b^c-1$. [/mm]
Dass [mm] $(b^c)^k-1$ [/mm] durch [mm] $b^c-1$ [/mm] teilbar ist, ist ein alter Hut, das folgt allgemein
aus der Tatsache, dass
[mm] $(x^k-y^k):(x-y)=x^{k-1}+x^{k-2}y+x^{k-3}y^2+\dots+xy^{k-2}+y^{k-1}$ [/mm] mit [mm] $x=b^c$ [/mm] und $y=1$.

mfg Moudi

>  
> Vielen Dank, Sebastian
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Bezug
                
Bezug
FF mod 11 = 0... hausgemacht: Korrekturmitteilung
Status: (Korrektur) Korrekturmitteilung Status 
Datum: 17:31 Di 14.11.2006
Autor: gregsn

laut
http://wwwmath.uni-paderborn.de/~mathkit/Inhalte/Reihen/data/manifest11/geometrisch.html
wäre das richtig:
[mm] $ \sum_{i=0}^{c-1} b^i=\bruch{1-b^c}{1-b} $ [/mm]

aber da [mm] $ b^c-1 $ [/mm] ein Teiler der linken Seite ist, wie schon richtig gezeigt, muss [mm] $ \bruch{1-b^c}{1-b} $ [/mm] auch ein Teiler sein, da man den Nenner wohl getrost ignorieren kann wenn dieser eine ganze Zahl ist.

Ich glaube ich habs verstanden.

Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de