www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Fachdidaktik" - Fachdidaktik Multiple Choice
Fachdidaktik Multiple Choice < Fachdidaktik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fachdidaktik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fachdidaktik Multiple Choice: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:12 Fr 30.01.2015
Autor: Raum21

Aufgabe
1 Es gibt gebrochenrationale Funktionen, deren Graphen weder eine waagrechte
noch eine senkrechte Asymptote haben.
2 Die Summe S von p Summanden der Primzahl p hat nur die Teiler 1, p, S.
3 Die Rechnung 7 : (14 + 21) = 7 : 14 + 7 : 21 = 7/14+7/21=1/2+1/3=1/5 ist fehlerfrei
4 Bei einer differenzierbaren Funktion f:R→R ist für ein Maximum an der
Stelle aÎR die Bedingung f´(a) = f´´(a) = 0 notwendig.
5 Es gibt eine ganzrationale Funktion f mit den Nullstellen
-100; -99; -98; . . . . ; -1; 0; 1; . . . ; 98; 99; 100.
6 Man kann jeden Punkt auf der Zahlengeraden mit einer rationalen Zahl
bezeichnen.
7 Es gibt eine konvergente Folge, deren Glieder alle Bruchzahlen sind und deren
Grenzwert die Zahl π ist.
8 Es ist 1/99=0,01 Periode
9 Stetigkeit ist eine notwendige Bedingung für Differenzierbarkeit.
10 Die Menge R der reellen Zahlen erhält man, indem man zu der Menge Q alle
Lösungen von Polynomgleichungen mit Koeffizienten aus Q dazu nimmt.
11 Die Aussage A und ( nicht A) ist eine Tautologie.
12 Die Funktion f mit f(x) = sin(k·x) hat die Periode k
p .
13 Da für f(x) = [mm] x^5 [/mm] gilt f´(0) = 0, ist f auf R nicht streng monoton steigend.
14 Wenn eine Funktion an einer Stelle a nicht differenzierbar ist, insbesondere
f´(a) = 0 nicht möglich ist, dann hat f an der Stelle a kein lokales Maximum.
15 Eine Funktion f mit f ´(a) = f ´´(a) = f ´´´(a) = 0 kann an der Stelle a kein
lokales Minimum annehmen.
16 Die Funktion f:R→R mit f(x) = [mm] x^7 [/mm] + [mm] x^6 [/mm] + 1000 hat mindestens eine Nullstelle

Ich soll ohne Begründung beurteile ob wahr oder falsch
1w
2w
3f
4f
5w
6f
7w
8w
9w
10f
11f
12f
13f
14f
15w
16w

Es wäre toll wenn mir jemand sagen könnte wie viele von den 16 richtig sind.
Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: www.matheplanet.de


        
Bezug
Fachdidaktik Multiple Choice: Antwort
Status: (Antwort) fertig Status 
Datum: 13:40 Fr 30.01.2015
Autor: Fulla

Hallo Raum21,

[willkommenmr]

> 1 Es gibt gebrochenrationale Funktionen, deren Graphen
> weder eine waagrechte
> noch eine senkrechte Asymptote haben.
> 2 Die Summe S von p Summanden der Primzahl p hat nur die
> Teiler 1, p, S.
> 3 Die Rechnung 7 : (14 + 21) = 7 : 14 + 7 : 21 =
> 7/14+7/21=1/2+1/3=1/5 ist fehlerfrei
> 4 Bei einer differenzierbaren Funktion f:R→R ist für ein
> Maximum an der
> Stelle aÎR die Bedingung f´(a) = f´´(a) = 0 notwendig.
> 5 Es gibt eine ganzrationale Funktion f mit den Nullstellen
> -100; -99; -98; . . . . ; -1; 0; 1; . . . ; 98; 99; 100.
> 6 Man kann jeden Punkt auf der Zahlengeraden mit einer
> rationalen Zahl
> bezeichnen.
> 7 Es gibt eine konvergente Folge, deren Glieder alle
> Bruchzahlen sind und deren
> Grenzwert die Zahl π ist.
> 8 Es ist 1/99=0,01 Periode
> 9 Stetigkeit ist eine notwendige Bedingung für
> Differenzierbarkeit.
> 10 Die Menge R der reellen Zahlen erhält man, indem man zu
> der Menge Q alle
> Lösungen von Polynomgleichungen mit Koeffizienten aus Q
> dazu nimmt.
> 11 Die Aussage A und ( nicht A) ist eine Tautologie.
> 12 Die Funktion f mit f(x) = sin(k·x) hat die Periode k
> p .
> 13 Da für f(x) = [mm]x^5[/mm] gilt f´(0) = 0, ist f auf R nicht
> streng monoton steigend.
> 14 Wenn eine Funktion an einer Stelle a nicht
> differenzierbar ist, insbesondere
> f´(a) = 0 nicht möglich ist, dann hat f an der Stelle a
> kein lokales Maximum.
> 15 Eine Funktion f mit f ´(a) = f ´´(a) = f ´´´(a) =
> 0 kann an der Stelle a kein
> lokales Minimum annehmen.
> 16 Die Funktion f:R→R mit f(x) = [mm]x^7[/mm] + [mm]x^6[/mm] + 1000 hat
> mindestens eine Nullstelle
> Ich soll ohne Begründung beurteile ob wahr oder falsch
> 1w
> 2w
> 3f
> 4f
> 5w
> 6f
> 7w
> 8w
> 9w
> 10f
> 11f
> 12f
> 13f
> 14f
> 15w
> 16w

>

> Es wäre toll wenn mir jemand sagen könnte wie viele von
> den 16 richtig sind.

Zu 2.
Wie ist das zu verstehen? So: [mm]S=\underbrace{p+p+p+\ldots +p+p}_{p\text{ Summanden}} =p\cdot p=p^2[/mm], oder so: [mm]S=\underbracd{a+a+a+\ldots+a}_{p\text{ Summanden}}=a\cdot p[/mm]? In beiden Fällen ist die Aussage falsch, da der Teiler [mm]p^2[/mm] bzw. [mm]a[/mm] fehlt.

Zu 6.
Kommt drauf an, was man unter "Zahlengerade" versteht. Nur die natürlichen, ganzen, rationalen Zahlen? Dann wäre die Aussage wahr. Falls die reellen Zahlen gemeint sind, ist sie falsch.

Zu 8.
Es ist [mm]\frac{1}{99}=0.\overline{01}[/mm]. So wie es oben steht, könnte man es auch als [mm]\frac{1}{99}=0.0\overline1}[/mm] lesen.

Zu 15.
Schau dir mal [mm]f(x)=-e^{-x^2}[/mm] an der stelle [mm]a=0[/mm] an...

Mit dem Rest bin ich einverstanden ;-)


Lieben Gruß,
Fulla

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fachdidaktik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de