www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Faktorgruppe A/2A
Faktorgruppe A/2A < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faktorgruppe A/2A: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:03 Sa 20.11.2010
Autor: ThomasTT

Aufgabe
keine

Hi,

und zwar frage ich mich, was ich aus der Aussage "Sei A eine abelsche Gruppe mit [mm] |A/2A|<\infty" [/mm] rausholen kann.
Kann ich nun mit dem Satz von Lagrange schließen, dass folgendes gilt:
[mm] \frac{|A|}{|2A|}=|A/2A|<\infty [/mm]
Und daher ist auch [mm] |A|<\infty? [/mm]

Gruß

Thomas

        
Bezug
Faktorgruppe A/2A: Antwort
Status: (Antwort) fertig Status 
Datum: 18:30 Sa 20.11.2010
Autor: Lippel

Hallo,


>  Hi,
>  
> und zwar frage ich mich, was ich aus der Aussage "Sei A
> eine abelsche Gruppe mit [mm]|A/2A|<\infty"[/mm] rausholen kann.
>  Kann ich nun mit dem Satz von Lagrange schließen, dass
> folgendes gilt:
>  [mm]\frac{|A|}{|2A|}=|A/2A|<\infty[/mm]
>  Und daher ist auch [mm]|A|<\infty?[/mm]

Ich weiß auch nicht was du folgern kannst, aber das, was du gemacht hast, geht sicher nicht. Überlege es dir am Beispiel der abelschen Gruppe [mm] $\IZ$. [/mm] Es ist [mm] $|\IZ/2\IZ|$=2<\infty, [/mm] aber [mm] |\IZ| [/mm] hat keine endliche Ordnung.

Viele Grüße, Lippel

Bezug
        
Bezug
Faktorgruppe A/2A: Antwort
Status: (Antwort) fertig Status 
Datum: 01:56 So 21.11.2010
Autor: felixf

Moin Thomas!

> und zwar frage ich mich, was ich aus der Aussage "Sei A
> eine abelsche Gruppe mit [mm]|A/2A|<\infty"[/mm] rausholen kann.
>  Kann ich nun mit dem Satz von Lagrange schließen, dass
> folgendes gilt:
>  [mm]\frac{|A|}{|2A|}=|A/2A|<\infty[/mm]
>  Und daher ist auch [mm]|A|<\infty?[/mm]

Dass $|A| < [mm] \infty$ [/mm] nicht sein muss hatten wir ja schon.

Daraus folgt z.B., dass die 2-Sylow-Untergruppe von $A$ endlich ist.

Fuer alle anderen Primzahlen $p$ laesst sich jedoch nichts ueber die $p$-Sylow-Untergruppe aussagen. (Dazu muesste man $A/pA$ anschauen.)

Weiterhin: ist $A$ eine freie abelsche Gruppe (also isomorph [mm] $\bigoplus_{i\in I} \IZ$), [/mm] so ist $A/2A$ isomorph zu [mm] $\bigoplus_{i\in I} (\IZ/2\IZ)$, [/mm] womit $|A/2A| = [mm] 2^{|I|}$ [/mm] ist. In dem Fall folgt also, dass $A$ endlich erzeugt ist.

(Im allgemeinen muss $|A/2A| < [mm] \infty$ [/mm] nicht erzwingen, dass $A$ endlich erzeugt ist: ist $A$ etwa 2-teilbar, also $2 A = A$, so folgt immer $|A/2A| = 1$, jedoch muss $A$ nicht endlich erzeugt sen, wie die Gruppe $A = [mm] \IQ/\IZ$ [/mm] zeigt.)

LG Felix


Bezug
                
Bezug
Faktorgruppe A/2A: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:10 Di 30.11.2010
Autor: ThomasTT

Vielen Dank.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de