www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Faktorgruppe, isom. Einbettung
Faktorgruppe, isom. Einbettung < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faktorgruppe, isom. Einbettung: Diverse Fragen zum Thema
Status: (Frage) überfällig Status 
Datum: 15:24 Mo 25.07.2011
Autor: rammy

Aufgabe
Beim Lernen für die Algebra Prüfung stehe ich einigen Unklarheiten bevor:


1.) G/G={G} das geht mir noch ein, aber das hier:
Warum ist G/G [mm] \cong [/mm] {e}. (Also die Faktorgruppe, G nach G isomorph zu der Menge des neutralen Elements?)

2.)GL(n,K)/SL(n,K) [mm] \cong K\{0\} [/mm]

3.) Was passiert bei der isomorphen Einbettung? Also speziell hier in diesem Schritt, der Rest leuchtet mir in Etwa ein:

[mm] \IC [/mm] = [mm] ((\IRx\IR)\f(\IR)) \cup \IR. [/mm]

Warum wird [mm] f(\IR) [/mm] ausgeschlossen?


        
Bezug
Faktorgruppe, isom. Einbettung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:48 Mo 25.07.2011
Autor: schachuzipus

Hallo rammy,


> Beim Lernen für die Algebra Prüfung stehe ich einigen
> Unklarheiten bevor:
>  
> 1.) G/G={G} das geht mir noch ein, aber das hier:
> Warum ist [mm]G/G[/mm] [mm]\cong[/mm] [mm]\{e\}[/mm]. (Also die Faktorgruppe, G nach G
> isomorph zu der Menge des neutralen Elements?)

Ich würde meinen, dahinter steckt der (1.) Isomorphiesatz.

Betrachte den G-Homomorphismus [mm]\varphi:G\to G, g\mapsto e[/mm] ([mm]e[/mm] neutrales Element in [mm]G[/mm])

Dann ist [mm]\operatorname{ker}(\varphi)=G[/mm], also [mm]G/\underbrace{\operatorname{ker}(\varphi)}_{=G}\cong\underbrace{\varphi(G)}_{=\{e\}}[/mm]

>  
> 2.)GL(n,K)/SL(n,K) [mm]\cong K\setminus\{0\}[/mm]

Frage?

>  
> 3.) Was passiert bei der isomorphen Einbettung? Also
> speziell hier in diesem Schritt, der Rest leuchtet mir in
> Etwa ein:
>  
> [mm]\IC[/mm] = [mm]((\IRx\IR)\f(\IR)) \cup \IR.[/mm]

Laut Quelltext: [mm]\IC=((\IR\times\IR)\setminus f(\IR))\cup\IR[/mm]  <-- klick mal drauf!

>  
> Warum wird [mm]f(\IR)[/mm] ausgeschlossen?

Was ist [mm]f[/mm] ??

Gruß

schachuzipus


Bezug
                
Bezug
Faktorgruppe, isom. Einbettung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:57 Mo 25.07.2011
Autor: rammy

Ich danke dir für die kompetente Hilfestellungen / Erklärungen.
Punkt 1 ist mir nun ganz klar.

Bzgl. Punkt 2:
Die spezielle lineare Gruppe nach der allgemeinen linearen Gruppe soll isomorph zu einem Körper K ohne der Nullmenge isomorph sein? Das kann ich irgendwie nicht verstehen, bzw. verstehe ich es doch, aber falsch oder so!

Punkt 3:
Die Funktion f ordnet jedem x den Wert 0 zu, wird deswegen dieses aus dem Definitionsbereich ausgeschlossen, da sonst alle Werte auf 0 abgebildet werden und nicht in der (gausschen) Ebene verteilt bzw. als Punkte angesehen werden?

Bezug
                        
Bezug
Faktorgruppe, isom. Einbettung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:06 Mo 25.07.2011
Autor: schachuzipus

Hallo nochmal,

zu Punkt 2)


> Ich danke dir für die kompetente Hilfestellungen /
> Erklärungen.
>  Punkt 1 ist mir nun ganz klar.

Gut!

>  
> Bzgl. Punkt 2:
> Die spezielle lineare Gruppe nach der allgemeinen linearen
> Gruppe soll isomorph zu einem Körper K ohne der Nullmenge
> isomorph sein? Das kann ich irgendwie nicht verstehen, bzw.
> verstehe ich es doch, aber falsch oder so!

Wie in Punkt 1:

[mm] $\varphi=\operatorname{det}$ [/mm] die Determinantenabb.

[mm] $\operatorname{det}:\operatorname{Gl}(n,\IK)\to \IK\setminus\{0\}, A\mapsto \operatorname{det}(A)$ [/mm]

Invertierbare Matrizen haben nicht verschwindende Determinante.

Was ist der Kern der Determinantenabb.? Was das Bild?

Was gilt demnach nach dem 1.Isom.satz?

Gruß

schachuzipus


Bezug
                        
Bezug
Faktorgruppe, isom. Einbettung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:47 Mo 25.07.2011
Autor: felixf

Moin!

> Punkt 3:
>  Die Funktion f ordnet jedem x den Wert 0 zu, wird deswegen
> dieses aus dem Definitionsbereich ausgeschlossen, da sonst
> alle Werte auf 0 abgebildet werden und nicht in der
> (gausschen) Ebene verteilt bzw. als Punkte angesehen
> werden?

Ich habe Zweifel, dass es sich um die Funktion $f : [mm] \IR \to \IR \times \IR$, [/mm] $x [mm] \mapsto [/mm] 0$ handelt. Schreibe bitte mal die formale Definition von $f$ auf.

LG Felix


Bezug
                        
Bezug
Faktorgruppe, isom. Einbettung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Mi 27.07.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Faktorgruppe, isom. Einbettung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Mi 27.07.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de