www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Faktorgruppen
Faktorgruppen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faktorgruppen: Aussehen, Ordnung
Status: (Frage) beantwortet Status 
Datum: 19:40 Do 07.05.2009
Autor: slash

Aufgabe
1.) Faktorgruppe [mm] C_{12} [/mm] nach [mm] C_{6} [/mm] = [mm] C_{2} [/mm] - warum?
[mm] (C_{i} [/mm] ist zyklische Gruppe der Ordnung i)

2.) Warum ist die Ordnung der [mm] S_{4} [/mm] nach [mm] A_{4} [/mm] gleich 2?

Lerne gerade für die Examensprüfung Algebra.
Habe durch die wunderbaren zugelosten Prüfungstermine kaum Zeit zum Nachschlagen und muss mir alles "Hau-den-Lukas"-mäßig reinprügeln.

Es wäre sehr nett, wenn mir jemand diese Fragen beantworten würde.

Danke, slash.

        
Bezug
Faktorgruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:52 Do 07.05.2009
Autor: felixf

Hallo!

> 1.) Faktorgruppe [mm]C_{12}[/mm] nach [mm]C_{6}[/mm] = [mm]C_{2}[/mm] - warum?
>  [mm](C_{i}[/mm] ist zyklische Gruppe der Ordnung i)
>  
> 2.) Warum ist die Ordnung der [mm]S_{4}[/mm] nach [mm]A_{4}[/mm] gleich 2?
>  Lerne gerade für die Examensprüfung Algebra.
>  Habe durch die wunderbaren zugelosten Prüfungstermine kaum
> Zeit zum Nachschlagen und muss mir alles
> "Hau-den-Lukas"-mäßig reinprügeln.

Guck mal nach dem Satz von Lagrange. Der sagt dir wieviele Elemente die Faktorgruppe hat, und dann ueberleg wieviele Gruppen der Ordnung 2 es gibt...

LG Felix


Bezug
                
Bezug
Faktorgruppen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:12 Do 07.05.2009
Autor: slash

Ist das die Antwort für Beides?
Erkärt das auch, warum C12 nach C4 = C3?

==
Gruppenordnung = Anzahl Nebenklassen*Untergruppenordnung

D.h., die C6 hat 6 Elemente, somit bleiben noch 2 Elemente für die Faktorgruppe, da diese die Menge aller Nebenklassen ist.
Richtig?

Kann man solche Aussagen auch treffen, wenn C1254 nach C169 gegeben wären?

Danke.

Bezug
                        
Bezug
Faktorgruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:25 Do 07.05.2009
Autor: felixf

Hallo!

> Ist das die Antwort für Beides?
>  Erkärt das auch, warum C12 nach C4 = C3?

Ja.

> ==
>  Gruppenordnung = Anzahl Nebenklassen*Untergruppenordnung
>  
> D.h., die C6 hat 6 Elemente, somit bleiben noch 2 Elemente
> für die Faktorgruppe, da diese die Menge aller Nebenklassen
> ist.
>  Richtig?

Genau, da $2 [mm] \cdot [/mm] 6 = 12$.

> Kann man solche Aussagen auch treffen, wenn C1254 nach C169
> gegeben wären?

Nun, C169 ist keine Untergruppe von C1254 (weil 169 kein Teiler von 1254 ist).

Wenn dem doch so waere, dann koenntest du so vorgehen. Du wuerdest dann die Anzahl Elemente in der Faktorgruppe bekommen. Wenn dies eine Primzahl ist, bist du eh fertig. Wenn es keine ist, musst du noch ein anderes Argument benutzen: Untergruppen und Faktorgruppen von zyklischen Gruppen sind wieder zyklisch.

LG Felix


Bezug
                                
Bezug
Faktorgruppen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:51 Fr 08.05.2009
Autor: slash

:)
Stimmt ... hab die Zahlen einfach so drauf los getippt.

Merci beaucoup, felix.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de