www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 5-7" - Faktorisieren
Faktorisieren < Klassen 5-7 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 5-7"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faktorisieren: Hausaufgabe, die ich nicht ...
Status: (Frage) beantwortet Status 
Datum: 15:14 Mi 23.08.2006
Autor: Chris94

Aufgabe
Schreibe folgende Summen oder Differenzen als Produkt (Faktorisieren).
Beispiel: 3(a + b) - x(a + b) = (a + b) (3 - x)

Aufgabe:
(4u - 3v) (6m - n) - 2(6m - n) (u + 2v) - (6m - n)

Hallo, ich habe hier eine Hausaufgabe von heute zu morgen aufbekommen, die ich selber nicht lösen kann. Könnte jemand so nett sein und mir diese Aufgabe lösen und erklären wie es gemacht wird? Wäre echt nett. Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Faktorisieren: faktorisiert
Status: (Antwort) fertig Status 
Datum: 15:28 Mi 23.08.2006
Autor: statler

Hallo!

> Schreibe folgende Summen oder Differenzen als Produkt
> (Faktorisieren).
>  Beispiel: 3(a + b) - x(a + b) = (a + b) (3 - x)
>  
> Aufgabe:
>  (4u - 3v) (6m - n) - 2(6m - n) (u + 2v) - (6m - n)

Deine Aufgabe beseht aus 3 Produkten, die zu einer Summe bzw. Differenz zusammengefaßt sind:
(4u - 3v) (6m - n) - 2(6m - n) (u + 2v) - (6m - n) =
(4u - 3v)*(6m - n) - 2*(6m - n)*(u + 2v) -1*(6m - n)
In allen 3 Produkten kommt der gleiche Faktor (6m - n) vor. Den kann man daher ausklammern:
(4u - 3v)*(6m - n) - 2*(6m - n)*(u + 2v) -1*(6m - n) =
(6m - n)*[(4u - 3v) - 2*(u + 2v) - 1)] =
(6m - n)*[4u - 3v - 2u - 4v - 1) =
(6m - n)*[4u - 3v - 2u - 4v - 1] =
(6m - n)*(2u - 7v - 1)

Gruß aus HH-Harburg
Dieter


Bezug
                
Bezug
Faktorisieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:42 Mi 23.08.2006
Autor: Chris94

Danke für die schnelle Antwort. Ich versuche gerade die Aufgabe nachzuvollziehen und da wollte ich Fragen, woher die -1 am Ende dieser Zeile...

(6m - n)*[(4u - 3v) - 2*(u + 2v) - 1)] =

...herkommt?

Bezug
                        
Bezug
Faktorisieren: da steht eine 1
Status: (Antwort) fertig Status 
Datum: 15:49 Mi 23.08.2006
Autor: Roadrunner

Hallo Chris!


Im Grunde steht doch bei Deiner Aufgabenstellung:

$(4u - [mm] 3v)*\blue{(6m - n)} [/mm] - [mm] 2*\blue{(6m - n)}* [/mm] (u + 2v) - [mm] \blue{(6m - n)}*\red{1}$ [/mm]

Durch das Ausklammern von [mm] $\blue{(6m-n)}$ [/mm] verbleibt also der Term [mm] $\red{-1}$ [/mm] .


Nun klar(er)?


Gruß vom
Roadrunner


Bezug
                                
Bezug
Faktorisieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:56 Mi 23.08.2006
Autor: Chris94

Jetzt ja, habe das - übersehen. Man kann es ja nicht einfach so weglassen.

Bezug
        
Bezug
Faktorisieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:46 Mi 23.08.2006
Autor: Chris94

Das war nur eine Aufgabe von vier und die anderen drei habe ich eben auf eigene Faust versucht zu lösen. Wäre nett, wenn jemand sie überprüfen könnte.

Hier die Aufgaben:
2.) A:    3(15 - 3a) (x - 8y) - 2(a + 7) (x - 8y) - (x - 8y)
    L:  = (x - 8y) [3(15 - 8a) - 2(a + 7) - 1]
        = (x - 8y) (30 - 22a)


3.) A:    6(4m - 3n) (2a - 3b) + 3(2m + 7n) (2a - 3b) - 2a + 3b
    L:  = 6(4m - 3n) (2a - 3b) + 3(2m + 7n) (2a - 3b) + (2a - 3b)
        = (2a - 3b) [6(4m - 3n) + 3(2m + 7n)]
        = (2a - 3b) (30m + 3n)


4.) A:    2(u + 2v) (4r - s) - u - 2v + (4r - 7s) (u + 2v)
    L:  = 2(u + 2v) (4r - s) + (u + 2v) + (4r - 7s) (u + 2v)

    Ab hier bin ich mir nicht ganz sicher, ob es so weiter gemacht werden soll...

        = (u + 2v) [2(4r - s + 4r - 7s)]
        = (u + 2v) (16r - 16s)

    ...oder so:

        = 2(u + 2v) (4r - s + 4r - 7s)
        = 2u + 4v + 8r - 8s


Bezug
                
Bezug
Faktorisieren: kleine Korrekturen
Status: (Antwort) fertig Status 
Datum: 16:57 Mi 23.08.2006
Autor: ardik

Hallo Chris,

Zu 2.)

$3*( - 8a) - 2a = -24a - 2a = -26a$
  
Zu 3.)
$-2a + 3b [mm] \ne [/mm] + (2a - 3b) = 2a - 3b$
sondern:
$-2a + 3b =-( 2a - 3b)$
Wie Du durch anschließendes wieder ausmultiplizieren überprüfen kannst

>          = (2a - 3b) [6(4m - 3n) + 3(2m + 7n)]

Hier ist dir wieder eine -1 durch die Lappen gegangen.

Zu 4.)
Hier sinngemäß das gleiche wie bei 3.):
$ - u - 2v [mm] \ne [/mm] (u + 2v) $
$ - u - 2v = -(u + 2v) $

> Ab hier bin ich mir nicht ganz sicher, ob es so weiter
> gemacht werden soll...

Es soll sicherlich vor Allem der Ausdruck $(u+2v)$ im Ergebnis auftauchen

>          = (u + 2v) (16r - 16s)

Hier wäre es noch elegant gewesen, die 16 auszuklammern: $16(u + 2v) (r - s)$

> = 2(u + 2v) (4r - s + 4r - 7s)
>          = 2u + 4v + 8r - 8s

Diese Umformung ist falsch. Hast Du evtl. die Klammern verschusselt?
Richtig wäre hier allenfalls gewesen: $(2u + 4v)(8r - 8s)$
Aber auch da hättest Du noch 2 und 8 (=16) ausklammern können.

Aber egal, durch den obigen Rechenfehler sieht das Endergebnis ja ohnehin anders aus... ;-)

Schöne Grüße,
ardik

Bezug
                        
Bezug
Faktorisieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:23 Mi 23.08.2006
Autor: Chris94

Das mit der vierten Aufgabe habe ich jetzt nicht ganz verstanden. Könntest du sie für mich vorrechnen bitte?

Bezug
                                
Bezug
Faktorisieren: zunächst (-1) ausklammern
Status: (Antwort) fertig Status 
Datum: 17:33 Mi 23.08.2006
Autor: Roadrunner

Hallo Chris!


Du musst hier bei dem einen Term zunächst die $(-1)$ ausklammern:

$2*(u + 2v)*(4r - s) - u - 2v + (4r - 7s)*(u + 2v)_$

$= \ 2*(u + 2v)*(4r - s) + \ [mm] \red{(-1)}*u +\red{(-1)}*2v [/mm] + (4r - 7s) *(u + 2v)$

$= \ 2*(u + 2v)*(4r - s) + \ [mm] \red{(-1)}*(u [/mm] +2v) + (4r - 7s) *(u + 2v)$

$= \ [mm] 2*\blue{(u + 2v)}* [/mm] (4r - s) \ [mm] \red{-} [/mm] \ [mm] \blue{(u +2v)} [/mm] + (4r - 7s)* [mm] \blue{(u + 2v)}$ [/mm]

Und nun [mm] $\blue{(u +2v)} [/mm] $ ausklammern ...


Gruß vom
Roadrunner


Bezug
                                        
Bezug
Faktorisieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:46 Mi 23.08.2006
Autor: Chris94

Ist das richtig?
$ (u + 2v) [mm] \cdot{} [/mm] (12r - 9s - 1)_ $

Bezug
                                                
Bezug
Faktorisieren: Richtig!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:52 Mi 23.08.2006
Autor: Roadrunner

.

     [daumenhoch]


Gruß vom
Roadrunner


Bezug
        
Bezug
Faktorisieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:06 Mi 23.08.2006
Autor: Chris94

[aufgemerkt]

Nach langem hin und her, habe ich meine Aufgaben nun richtig gelöst und das Dank eurer Hilfe.
Also, vielen herzlichen Dank an euch alle, die mir geholfen habe!!! [ok]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 5-7"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de