www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Faktorisieren
Faktorisieren < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faktorisieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:35 Mi 09.11.2011
Autor: Lisa92

Aufgabe
Faktorisiere:
[mm] x^{3} [/mm] - [mm] 6x^{2}+11x [/mm] - 6

Hallo,
Ich versuche die oben genannte Aufgabe zu lösen. Von einem Freund weiß ich, dass es (x-3) (x-2) (x-1) ist. Kann mir jemand die Schritte erklären, wie man darauf kommen kann?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Faktorisieren: Antwort
Status: (Antwort) fertig Status 
Datum: 21:40 Mi 09.11.2011
Autor: felixf

Hallo Lisa!

> Faktorisiere:
>  [mm]x^{3}[/mm] - [mm]6x^{2}+11x[/mm] - 6
>
>  Ich versuche die oben genannte Aufgabe zu lösen. Von
> einem Freund weiß ich, dass es (x-3) (x-2) (x-1) ist. Kann
> mir jemand die Schritte erklären, wie man darauf kommen
> kann?

Nun, erstmal suchst du Nullstellen. Wenn du eine gefunden hast, sagen wir [mm] $\alpha$, [/mm] dann machst du Polynomdivision mit $x - [mm] \alpha$, [/mm] und es sollte kein Rest bleiben (wenn du dich nicht verrechnet hast). Dann machst du mit dem Quotienten weiter. Und zwar solange, bis er ein Polynom von Grad 1 (oder 0) ist.

Bei diesem Polynom beachte: ist $f$ ein normiertes Polynom (d.h. der Koeffizient vor der hoechsten Potenz von $x$ ist 1, so wie hier: die hoechste Potenz von $x$ ist [mm] $x^3$) [/mm] mit ganzzahligen Koeffizienten. Ist $x [mm] \in \IQ$ [/mm] mit $f(x) = 0$, so gilt bereits $x [mm] \in \IZ$, [/mm] und $x$ ist ein Teiler vom konstanten Koeffizienten (dieser ist hier $-6$).

Ist der konstante Koeffizient gleich 0, so kannst du erstmal durch $X$ teilen. Das kannst du solange wiederholen, bis der konstante Koeffizient nicht mehr 0 ist, und dann wuerdest du mit dem Trick weiterkommen.

Hier kannst du aber direkt mit dem Trick loslegen. Ueberlege dir, welche ganzen Zahlen Teiler von $-6$ sind, und probiere diese durch.

LG Felix


Bezug
                
Bezug
Faktorisieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:59 Mi 09.11.2011
Autor: Lisa92

Hallo,
Vielen Dank für die schnelle Antwort. Ich habe das ganze jetzt gerade ausprobiert und das Ergebnis kommt genau hin. Das mit dem Teiler vom konstanten Koeffizienten kannte ich bisher noch nicht.
Aber damit sind diese Aufgabentypen damit auch kein Problem mehr.

Liebe Grüße

Lisa

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de