www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Faktorisierung
Faktorisierung < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faktorisierung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 00:08 Mi 02.05.2007
Autor: Hansi

Aufgabe
Zeigen Sie, dass die Zahlen [mm] a^{k}+1 [/mm] keine Kubikzahlen [mm] h^{3} [/mm] sein können, indem Sie [mm] a^{k} [/mm] = [mm] h^{3}-1 [/mm] ansetzen und in Faktoren zerlegen.

Die Faktorisierung ist ja noch ganz einfach: [mm] a^{k}=(h-1)\*(h^{2}+h+1), [/mm] leider komme ich danach aber überhaupt nicht weiter. Ich muss diesen Ansatz ja irgendwie zum Widerspruch führen, habe aber leider keinen Idee wie das gehen könnte. Kann mir jemand helfen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Faktorisierung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:20 Mi 02.05.2007
Autor: felixf

Hallo!

> Zeigen Sie, dass die Zahlen [mm]a^{k}+1[/mm] keine Kubikzahlen [mm]h^{3}[/mm]
> sein können, indem Sie [mm]a^{k}[/mm] = [mm]h^{3}-1[/mm] ansetzen und in
> Faktoren zerlegen.
>  Die Faktorisierung ist ja noch ganz einfach:
> [mm]a^{k}=(h-1)\*(h^{2}+h+1),[/mm] leider komme ich danach aber
> überhaupt nicht weiter. Ich muss diesen Ansatz ja irgendwie
> zum Widerspruch führen, habe aber leider keinen Idee wie
> das gehen könnte. Kann mir jemand helfen?

Berechne mal den groessten gemeinsamen Teiler von $h - 1$ und [mm] $h^2 [/mm] + h + 1$. Was fuer Moeglichkeiten gibt es fuer diesen?

Wenn die beiden teilerfremd sind, so muessen beide jeweils eine $k$-te Potenz sein. Damit kommst du vielleicht weiter. Das sollte der einfachere Fall sein, also versuche zuerst diesen zu loesen.

Wenn die beiden nicht teilerfremd sind, so ist der ggT eine Primzahl $p$ (welche in Frage kommen siehst du wenn du den ggT berechnest). Also kannst du $h - 1 = [mm] p^{\ell_1} m_1$ [/mm] und [mm] $h^2 [/mm] + h + 1 = [mm] p^{\ell_2} m_2$ [/mm] mit [mm] $m_1, m_2 \in \IN_{>0}$, [/mm] $p [mm] \nmid m_1, m_2$, $\ell_1, \ell_2 \in \IN_{>0}$ [/mm] schreiben mit [mm] $ggT(m_1, m_2) [/mm] = 1$. Damit muessen [mm] $m_1$ [/mm] und [mm] $m_2$ [/mm] ebenfalls $k$-te Potenzen sein, und [mm] $\ell_1 [/mm] + [mm] \ell_2$ [/mm] muss durch $k$ teilbar sein. Ich vermute mal, das man hier aehnlich wie im ersten Fall weiterkommt.

LG Felix


Bezug
                
Bezug
Faktorisierung: Tipp
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:38 Mo 07.05.2007
Autor: benni

Es gilt: [mm] h^2+h+1 [/mm] = (h-1)(h+2)+3. Der ggT ist also entweder 3 oder 1.

LG. Benni

Bezug
                        
Bezug
Faktorisierung: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:35 Di 08.05.2007
Autor: Hansi

Hi!

Danke für eure Tipps, bin leider nicht dazu gekommen früher zu antworten. Hab leider nicht wirklich noch was rausbekommen, aber vielleicht bekomme ich auf die Ansätze ja auch noch ein paar Punkte.

Mfg, Hansi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de