www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Faktorringe
Faktorringe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faktorringe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:53 So 18.01.2015
Autor: xtraxtra

Ich habe leider so meine Probleme mir unter Faktorringen etwas vorzustellen. Ich weiß dass das der Äquivalenzklassenbildung der Gruppen entspricht.
Aber der Vorstellung scheiterts dann:
Ich soll die Elemente folgender Faktorringe bestimmen (ich schreib dahinter gleich einmal meine vermmuteten Lösungen):
[mm] \IZ/2\IZ [/mm] = {0,1}
[mm] \IZ[X]/(2) [/mm] = {0,1}
[mm] \IQ[X]/(X) [/mm] = [mm] \IQ [/mm]
[mm] \IQ[X]/(X²+1) [/mm] = {f [mm] \in \IQ[X] [/mm] | aX+b , a,b [mm] \in \IQ [/mm] }
[mm] \IZ[i]/(2+3i) [/mm] hier habe ich leider keine Idee...

Wäre super wenn mir jmd meine Lösungen bestätigen/berichtigen könnte und bei den letzten Elementen hälfen könnte

        
Bezug
Faktorringe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:19 So 18.01.2015
Autor: xtraxtra

Ich habe nochmal drüber nachgedacht: [mm] \IZ[X]/(2) [/mm] wird wahrscheinlich {0,1,X,X+1,X²,X²+X,X²+1,X²+X+1,....} sein.

Bezug
        
Bezug
Faktorringe: Antwort
Status: (Antwort) fertig Status 
Datum: 12:31 So 18.01.2015
Autor: hippias

Die Elemente des Faktorringes zu bestimmen, ist ein mir etwas unklarer Arbeitsauftrag. Ich werde ein Representantensystem bestimmen.

Zuerst aber: Die Elemente der Faktorstruktur sind Mengen. Daher sind alle Deine Loesungen falsch, obwohl Du zumeist das richtige zu meinen scheinst. Verwechsle im Folgenden nicht das Ideal $(X+1)$ mit dem eingeklammerten Polynom $(X+1)$.

Beispielhaft bearbeite ich [mm] $\IQ[X]/(X+1)$. [/mm] Nach Definition ist [mm] $\IQ[X]/(X+1)= \{f+(X+1)|f\in \IQ[X]\}$, [/mm] wobei wieder nach Definition $f+(X+1)= [mm] \{f+g(X+1)|g\in \IQ[X]\}$ [/mm] die Menge der Polynome, die als Summe von $f$ und einem Vielfachen von $X+1$ gebildet sind.

Diese Beschreibung von [mm] $\IQ[X]/(X+1)$ [/mm] ist noch etwas unuebersichtlich. Daher versuche ich einfache Polynome zu finden, die alle Restklassen beschreiben. Dazu sei [mm] $f\in \IQ[X]$. [/mm] Dann existieren [mm] $g,r\in \IQ[X]$ [/mm] mit $f= g(X+1)+r$, wobei [mm] $r\in \IQ$ [/mm] (Division mit Rest). Also sehe ich, dass es zu jedem [mm] $f\in\IQ[X]$ [/mm] ein [mm] $r\in \IQ$ [/mm] gibt, sodass $f$ in der Restklasse von $r$ liegt.

Man sagt die Menge [mm] $\IQ$ [/mm] bildet ein Representantensystem der Aequivalenzrelation.

Also [mm] $\IQ[X]/(X+1)= \{r+(X+1)|r\in \IQ\}$. [/mm] Man koennte aber auch schreiben [mm] $\IQ[X]/(X+1)\cong \IQ$ [/mm] mit dem Isomorphismus [mm] $\phi: \IQ[X]/(X+1)\to \IQ$, [/mm] der die Restklasse $r+(X+1)$ auf die Zahl $r$ abbildet. Dass das Representantensystem eine isomorphe Struktur traegt, muss nicht der Fall sein, sondern ist eher ein Gluecksfall.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de