www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Fakultät/Binomialkoeffizient
Fakultät/Binomialkoeffizient < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fakultät/Binomialkoeffizient: 2n Fakultät umformen
Status: (Frage) beantwortet Status 
Datum: 13:35 So 12.10.2014
Autor: Propan

Aufgabe
Wie kann man 2n umschreiben? Ist 2n das gleiche wie (2n) und das gleiche wie (2n)!?

Die Aufgabe lautet: vereinfachen Sie durch kürzen:

(n+1)!/2n!

Zeller habe ich wie folgt ausgeschrieben: 1x2x3...n(n+1). Ist es richtig?
Aber wie soll ich bei der Umformung des Nenners vorgehen?

Ich vermute, dass es 1x2x3...2n(2n-1). Wäre es richtig?

Danke im Voraus! :)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Fakultät/Binomialkoeffizient: Antwort
Status: (Antwort) fertig Status 
Datum: 13:45 So 12.10.2014
Autor: Diophant

Hallo,

> Wie kann man 2n umschreiben? Ist 2n das gleiche wie (2n)
> und das gleiche wie (2n)!?

Nein, natürlich sind 2n und (2n)! verschiedene Zahlen, für n>1 jedenfalls...

> Die Aufgabe lautet: vereinfachen Sie durch kürzen:

>

> (n+1)!/2n!

>

> Zeller habe ich wie folgt ausgeschrieben: 1x2x3...n(n+1).
> Ist es richtig?
> Aber wie soll ich bei der Umformung des Nenners vorgehen?

>

> Ich vermute, dass es 1x2x3...2n(2n-1). Wäre es richtig?

>

Vermutlich ja. Aber wenn du das ernsthaft bestätigt haben möchtest, dann musst du dir beim Verfassen von Fragen schon ein wenig mehr Mühe geben. Was ist bspw. ein Zeller? Jemand aus Zell am See?

Was du gemacht hast, ist folgendes:

[mm] \frac{(n+1)!}{(2n)!}= \frac{(n+1)*n*(n-1)...*2*1}{2n*(2n-1)*...*2*1} [/mm]

Und da kann man jetzt noch kürzen, das verlangt ja auch die Aufgabenstellung.

In welchem Zusammenhang steht das, wie kommst du auf den Titel deiner Frage Fakultät/Binomialkoeffizient ?


Gruß, Diophant

 

Bezug
        
Bezug
Fakultät/Binomialkoeffizient: Antwort
Status: (Antwort) fertig Status 
Datum: 14:27 So 12.10.2014
Autor: DieAcht

Hallo Propan und [willkommenmr]!


> Wie kann man 2n umschreiben? Ist 2n das gleiche wie (2n)
> und das gleiche wie (2n)!?

Nein, aber das hat dir Diophant bereits gesagt.

> Die Aufgabe lautet: vereinfachen Sie durch kürzen:
>
> (n+1)!/2n!

Da du oben darauf hingewiesen hast gehe ich davon aus, dass deine
Schreibweise korrekt ist. Mit der Begründung

      [mm] (n+1)!=1*2*\ldots*n*(n+1)=n!*(n+1) [/mm]

erhalten wir

      [mm] \frac{(n+1)!}{2*n!}=\frac{n!*(n+1)}{2*n!}=\frac{n+1}{2} [/mm] für alle [mm] n\in\IN_0. [/mm]


Gruß
DieAcht

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de