www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Fallunterscheidung Kurvenschar
Fallunterscheidung Kurvenschar < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fallunterscheidung Kurvenschar: nötig oder nicht?
Status: (Frage) beantwortet Status 
Datum: 18:21 Mo 30.01.2006
Autor: der_sven

Hallo!

Ich habe folgende Kurvenschar gegeben:

f(x) = (x² + a²) / x

Als Extremwerte habe ich x= +/- a heraus und wenn ich jetzt f(a) berechne erhalte ich:
f(a) = - (2/a)

Also wäre ja an der Stelle x=a für a > 0 ein Hochpunkt und für a < 0 ein Tiefpunkt.

Allerdings habe ich ja in der Funktion selber nur ein a². Es ist also egal, ob ich etwas positives für a einsetze oder etwas negatives. Es käme beispielsweise für 2 und -2 exakt der gleiche Funktionsgraph heraus (obwohl dies ja laut der zweiten Ableitung nicht so sein dürfte).
Das hat mich jetzt alles etwas verwirrt, darum hoffe ich, dass jemand diese Verwirrung lösen kann. Muss ich nun eine Fallunterscheidung machen oder nicht? (und falls nicht: wann mache ich denn dann überhaupt eine Fallunterscheidung?)




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Fallunterscheidung Kurvenschar: 2. Ableitung!
Status: (Antwort) fertig Status 
Datum: 18:39 Mo 30.01.2006
Autor: Loddar

Hallo Sven!


Um zu überprüfen, ob an der Stelle [mm] $x_1 [/mm] \ = \ +a$ ein Hochpunkt oder ein Tiefpunkt vorliegt, musst Du diesen Wert doch in die zweite Ableitung einsetzen (hinreichendes Kriterium). Und dort wird dann auch die entsprechende Fallunterscheidung nötig.

[mm] $f_a''(x) [/mm] \ = \ [mm] \bruch{2a^2}{x^3}$ [/mm]


[mm] $f_a''(+a) [/mm] \ = \ [mm] \bruch{2a^2}{(+a)^3} [/mm] \ = \ [mm] \bruch{2a^2}{a^3} [/mm] \ = \ [mm] \bruch{2}{a}$ [/mm]

Dieser Term wird nun für positive $a_$ ebenfalls positiv, und damit liegt ein Tiefpunkt vor.

Umgekehrt erhalten wir für negative $a_$ auch einen negativen Wert der 2. Ableitung, also einen Hochpunkt.


Du siehst, es ist abhängig von $a_$, ob hier an der Stelle [mm] $x_1 [/mm] \ = \ +a$ ein Hoch- oder Tiefpunkt vorliegt. Von daher ist diese Fallunterscheidung erforderlich.


An der Stelle [mm] $x_2 [/mm] \ = \ -a$ sieht es dann genau umgekehrt aus (was ja auch logisch ist, da diese Kurvenschar punktsymmetrisch zum Ursprung ist).


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de