www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Faltung - Grenzen Exp-Vertlng.
Faltung - Grenzen Exp-Vertlng. < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faltung - Grenzen Exp-Vertlng.: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:18 Mo 18.02.2008
Autor: mexodus

Aufgabe
Bestimmen sie die Dichtefunktion der ZV Z:=X+Y durch die  Faltungsformel.
X und Y seien Exponentialverteilt, mit unterschiedlichen Parametern :

X~Exp(l)  Y~Exp(m)


Diese Aufgabe wurde bereits in diesem Forum gelöst:

https://matheraum.de/read?i=291262.

Meine Frage betrifft die Grenzen: Warum integriere ich von 0 bis z , da eigentlich die Funktion von 1 bis unendlich definiert ist.

Bin auf das Forum durch Recherche gestoßen und finde es echt gut, hoffe ihr seht es mir nach nicht den Formeleditor verwendet zu haben, da es ja nicht wirklich nötig war.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Faltung - Grenzen Exp-Vertlng.: Antwort
Status: (Antwort) fertig Status 
Datum: 13:44 Mo 18.02.2008
Autor: luis52

Moin mexodus,

[willkommenmr]

> Meine Frage betrifft die Grenzen: Warum integriere ich von
> 0 bis z , da eigentlich die Funktion von 1 bis unendlich
> definiert ist.
>  

Das zweite Integral schreibe ich mal ausfuehrlicher:

[mm] \begin{matrix} f_{X+Y}(z) &=&\int_{\IR} f_X(u) f_y(z-u) du \\ &=&1_{[0,\infty)}(z) \lambda \mu e^{-z \mu} \int_0^\infty e^{(\mu - \lambda) u}1_{[0,\infty)}(z-u) du \\ \end{matrix} [/mm]

Es ist [mm] $1_{[0,\infty)}(z-u)=1\iff u\le [/mm] z$. Das erklaert die Obergrenze.

Bitte bedenke, dass die obige Darstellung erforderlich macht, dass
X und Y unabhaengig sind. Steht nicht  in der Aufgabenstellung!

vg Luis              

Bezug
                
Bezug
Faltung - Grenzen Exp-Vertlng.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:14 Mo 18.02.2008
Autor: mexodus

Vielen Dank ertsmal, echt super Forum hier:

Eine kleine Frage hätte ich noch: Warum bezieht sich die Indikatorfunktion auf (z-u) , ich such da für mich noch nach einer Begründung, kann aber keine finden ...


Bezug
                        
Bezug
Faltung - Grenzen Exp-Vertlng.: Antwort
Status: (Antwort) fertig Status 
Datum: 14:40 Mo 18.02.2008
Autor: luis52


> Eine kleine Frage hätte ich noch: Warum bezieht sich die
> Indikatorfunktion auf (z-u) , ich such da für mich noch
> nach einer Begründung, kann aber keine finden ...
>  


Die Dichte von Y lautet: [mm] $f_y(y)=\mu\exp[-\mu y]1_{[0,\infty)}(y)$. [/mm]
Mithin ist [mm] $f_y(z-u)=\mu\exp[-\mu (z-u)]1_{[0,\infty)}(z-u)$ [/mm] ...

vg Luis      


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de