www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Faltung/Dichte-Bestimmung
Faltung/Dichte-Bestimmung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faltung/Dichte-Bestimmung: Ergebniskontrolle
Status: (Frage) beantwortet Status 
Datum: 11:34 So 04.06.2006
Autor: jeu_blanc

Aufgabe
Es seien X und Y unabhängige Zufallsvariablen. X sei gleichverteilt auf (0,1) und Y sei gleichverteilt auf (0,2). Bestimme die Dichte von X+Y.

Salut!

Nachfolgend meine Lösung zur Aufgabe, von welcher ich wissen will, ob sie soweit stimmt, da mir das ganze irgendwie komisch vorkommt - und sollte es sich nicht nur um meine Paranoia handeln, wäre ich über einen Tipp, wo der Fehler liegt, auch noch ganz dankbar... ;-)

Also:

Zu den Dichtefunktionen:
[mm] f_{X} [/mm] = 1 * ind(0;1)
[mm] f_{Y} [/mm] = [mm] \bruch{1}{2} [/mm] * ind(0;2)

wobei ind(a;b) die Indikatorfunktion über das Intervall (a;b) darstellen soll, also ind(a;b) = 1 [mm] \forall [/mm] n [mm] \in [/mm] (a;b), ind(a;b) = 0 [mm] \forall [/mm] n [mm] \not\in [/mm] (a;b)

Damit sollte sich doch für die Dichte von X+Y ergeben:

[mm] f_{X+Y}(z) [/mm] = [mm] \integral_{-\infty}^{\infty}{f_{X}(v)f_{Y}(z-v)dv} [/mm] = [mm] \integral_{-\infty}^{\infty}{1 * ind(0;1) * \bruch{1}{2} * ind(0;2) dv} [/mm] = [mm] \integral_{0}^{1}{\bruch{1}{2}dv} [/mm] = [mm] \bruch{1}{2} [/mm] * ind(0;1)

Entspricht das wirklich der Realität, oder täusche ich mich?

Herzlichen Dank für eure Hilfe auf jeden Fall bereits jetzt,
à bientôt,

Tarek.

        
Bezug
Faltung/Dichte-Bestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:05 So 04.06.2006
Autor: Walde

Hi jeu_blanc,

> [mm]f_{X+Y}(z)[/mm] =
> [mm]\integral_{-\infty}^{\infty}{f_{X}(v)f_{Y}(z-v)dv}[/mm] =
> [mm]\integral_{-\infty}^{\infty}{1 * ind(0;1) * \bruch{1}{2} * ind(0;2) dv}[/mm][mm] =\integral_{0}^{1}{\bruch{1}{2}dv} [/mm]

Ich glaube im letzten Schritt steckt ein Fehler. Da verarbeitest du die Indikatorfunktionen zu schnell.Ich schreibe es nochmal etwas ausführlicher.

[mm] f_{X+Y}(z)=\integral_{-\infty}^{\infty}{1*1_{[0;1]}(v)*\bruch{1}{2}*1_{[0;2]}(z-v) dv}=\bruch{1}{2}\integral_{0}^{1}{1_{[0;2]}(z-v) dv} [/mm]
Du musst beachten, dass bei der 2. Indik.fkt. nicht v , sondern z-v im Argument steht. Ich hab mir noch nicht überlegt, was dann rauskommt, aber vielleicht kommst du ja selbst drauf.

L G walde


Bezug
                
Bezug
Faltung/Dichte-Bestimmung: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:21 So 04.06.2006
Autor: jeu_blanc

Das ist ein Argument, ja... ;-)

Wobei das auf der anderen Seite auch heißt, dass der Rest bis dahin so weit nicht von der Realität entfernt sein kann - und die Indikatorfunktion sollte sich noch irgendwie entsprechend hinbiegen lassen, das lasse ich mir noch einmal durch den Kopf gehen.

Auf jeden Fall herzlichen Dank!

Tarek

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de