www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Faltung F-Transformation
Faltung F-Transformation < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faltung F-Transformation: Beweis
Status: (Frage) beantwortet Status 
Datum: 23:04 Mi 10.05.2006
Autor: nik03

Hallo,

Habe zu folgendem Beweis eine Frage:

[mm] F\left\{ ( f \*g )( k ) \right\} = \bruch{1}{2\pi} \integral_{0}^{2\pi}{( f \*g )( x ) * e^{-ikx} dx} = \bruch{1}{(2\pi)^{2}} \integral_{0}^{2\pi}\integral_{0}^{2\pi}{f ( x - y ) * g( y ) dy * e^{-ikx} dx} [/mm]
         [mm] = \bruch{1}{(2\pi)^{2}} \integral_{0}^{2\pi}\integral_{0}^{2\pi}{f ( x - y ) * e^{-ik(x-y)} * g( y ) * e^{-iky} dydx} [/mm]
         [mm] = \left( \bruch{1}{2\pi} \integral_{0}^{2\pi}\integral_{0}^{2\pi}{f ( x ) * e^{-ikx} dx} \right) * \left( \bruch{1}{2\pi} \integral_{0}^{2\pi}\integral_{0}^{2\pi}{g ( y ) * e^{-iky} dy} \right) = F\left\{ f( k )\right\}* F\left\{ g( k )\right\}[/mm]

Erste Zeile ist mir klar, hier wird die Definition der Faltung eingesetzt. Zweite Zeile ist mir in soweit klar das hier wohl mit [mm] \bruch{e^{iky} }{e^{iky}} [/mm] multipliziert wird. Der Schluss von der zweiten zur dritten Zeile ist mir aber nicht klar und auch nicht wie ich dann von dem Doppelintegral auf die Fouriertransformierte schliesse. Wenn ich die Definition von der Fouriertransformierten der jeweiligen Funktion einsetze bleibt nach der zweiten Integration doch ein [mm] 2\pi [/mm] übrig, da der Ausdruck [mm] \bruch{1}{2\pi} [/mm] doch zu der F-Tafo der Funktion gehört?

Vielleicht kann mir da jemand einen Tip geben...


Grüsse

Norbert

        
Bezug
Faltung F-Transformation: Antwort
Status: (Antwort) fertig Status 
Datum: 06:59 Do 11.05.2006
Autor: felixf

Hallo Norbert!

> Habe zu folgendem Beweis eine Frage:
>  
> [mm]F\left\{ ( f \*g )( k ) \right\} = \bruch{1}{2\pi} \integral_{0}^{2\pi}{( f \*g )( x ) * e^{-ikx} dx} = \bruch{1}{(2\pi)^{2}} \integral_{0}^{2\pi}\integral_{0}^{2\pi}{f ( x - y ) * g( y ) dy * e^{-ikx} dx}[/mm]
>  
>          [mm]= \bruch{1}{(2\pi)^{2}} \integral_{0}^{2\pi}\integral_{0}^{2\pi}{f ( x - y ) * e^{-ik(x-y)} * g( y ) * e^{-iky} dydx}[/mm]
>  
>          [mm]= \left( \bruch{1}{2\pi} \integral_{0}^{2\pi}\integral_{0}^{2\pi}{f ( x ) * e^{-ikx} dx} \right) * \left( \bruch{1}{2\pi} \integral_{0}^{2\pi}\integral_{0}^{2\pi}{g ( y ) * e^{-iky} dy} \right) = F\left\{ f( k )\right\}* F\left\{ g( k )\right\}[/mm]
>  
> Der Schluss von der zweiten zur dritten Zeile ist mir aber
> nicht klar und auch nicht wie ich dann von dem
> Doppelintegral auf die Fouriertransformierte schliesse.

Ich denke mal in der Zeile soll das [mm] $\int_0^{2\pi} \int_0^{2\pi}$ [/mm] jeweils nur ein [mm] $\int_0^{2\pi}$ [/mm] sein! Schliesslich tauch danach auch jeweils nur ein $dx$ bzw. $dy$ auf und nicht zwei wie es bei einem Doppelintegral der Fall sein muesste!

In dem Fall kommst du so von der 2. in die 3. Zeile:
- Du vertauscht erst mit Fubini die Reihenfolge der Integration.
- Dann holst du alles was nicht von x abhaengt aus dem Integral nach $x$ heraus.
- Das Verbleibende Intgral kannst du Umsubstitutionieren ($x - y$ durch $x$ ersetzen), dabei die Periodizitaet der Funktion ausnutzen!
- Dann kannst du das Intgral nach $x$ ganz aus dem Integral nach $y$ herausziehen, da es nicht mehr von $y$ abhaengt.

> Wenn ich die Definition von der Fouriertransformierten der
> jeweiligen Funktion einsetze bleibt nach der zweiten
> Integration doch ein [mm]2\pi[/mm] übrig, da der Ausdruck
> [mm]\bruch{1}{2\pi}[/mm] doch zu der F-Tafo der Funktion gehört?

Ich verstehe nicht ganz was du meinst. Wenn du einfach so tust das da jeweils nur ein Integral-Zeichen steht, hast du dann das Problem immernoch?

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de