www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Faltung von IR^d mit IR
Faltung von IR^d mit IR < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faltung von IR^d mit IR: Verständnis Definition
Status: (Frage) beantwortet Status 
Datum: 13:57 Di 18.03.2014
Autor: Natalie1988

Ich habe folgenden Ausdruck gegeben:

[mm] \nabla_x [/mm] U [mm] \* \rho, [/mm]

wobei x [mm] \in \IR^d [/mm] der Ort, U: [mm] \IR^d \to \IR [/mm] das Potential und [mm] \rho: \IR^d \times \IR \to \IR [/mm] die Dichte ist. Dabei ist U = U(x) und  [mm] \rho [/mm] = [mm] \rho(x,t). [/mm]

Angegeben ist die Faltung in x zwischen dem Potential und der Dichte. In den Definitionen der Faltung steht aber, dass beide Funktionen in den gleichen Raum abbilden müssen, in [mm] \IR. [/mm] Das ist bei mir nicht der Fall, da [mm] \nabla_x [/mm] U [mm] \in \IR^d. [/mm] Kann ich trotzdem die gewöhnliche Definition,

[mm] \nabla_x [/mm] U [mm] \* \rho [/mm] = [mm] \integral_{\IR^d}{\nabla_x U(\tau) \rho(x-\tau) d\tau}, [/mm]

anwenden?

        
Bezug
Faltung von IR^d mit IR: Antwort
Status: (Antwort) fertig Status 
Datum: 09:05 Mi 19.03.2014
Autor: Marcel

Hallo Natalie,

> Ich habe folgenden Ausdruck gegeben:
>  
> [mm]\nabla_x[/mm] U [mm]\* \rho,[/mm]
>  
> wobei x [mm]\in \IR^d[/mm] der Ort, U: [mm]\IR^d \to \IR[/mm] das Potential
> und [mm]\rho: \IR^d \times \IR \to \IR[/mm] die Dichte ist. Dabei
> ist U = U(x) und  [mm]\rho[/mm] = [mm]\rho(x,t).[/mm]
>  
> Angegeben ist die Faltung in x zwischen dem Potential und
> der Dichte. In den Definitionen der Faltung steht aber,
> dass beide Funktionen in den gleichen Raum abbilden
> müssen, in [mm]\IR.[/mm]

das kann auch [mm] $\IC$ [/mm] sein:

    []http://de.wikipedia.org/wiki/Faltung_%28Mathematik%29

> Das ist bei mir nicht der Fall, da
> [mm]\nabla_x[/mm] U [mm]\in \IR^d.[/mm] Kann ich trotzdem die gewöhnliche
> Definition,
>  
> [mm]\nabla_x[/mm] U [mm]\* \rho[/mm] = [mm]\integral_{\IR^d}{\nabla_x U(\tau) \rho(x-\tau) d\tau},[/mm]
>  
> anwenden?

Bist Du sicher, dass oben nicht vielleicht

    [mm] $\nabla_x [/mm] (U [mm] \* \rho)\,$ [/mm]

gemeint ist? Denn

    $(U [mm] \* \rho)(x)$ [/mm]

würde vielleicht (etwas) mehr Sinn machen...
(Ich würde mich allerdings fragen, wieso aus [mm] $\rho(x,t)$ [/mm] dabei [mm] $\rho(x)$ [/mm] wird...
beachte: [mm] $U\, \rho$ [/mm] müssten denselben Definitionsbereich, nennen wir ihn hier
mal [mm] $\IR^{\red{m}}\,$ [/mm] haben - vielleicht macht man das oben aber, indem
man $U(x,t):=U(x)$ für alle [mm] $t\,$ [/mm] *erweitert* - allerdings ist der Definitionsbereich
dann [mm] $\IR^{d}\times \IR$ [/mm] bzw. [mm] $\IR^m$ [/mm] mit [mm] $m:=d+1\,.$ [/mm]
Wobei ich strenggenommen bei

    [mm] $U(x,t):=U(x)\,$ [/mm]

linkerhand nicht [mm] $U\,$ [/mm] schreiben darf...)

Gruß,
  Marcel

Bezug
                
Bezug
Faltung von IR^d mit IR: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:25 Mi 19.03.2014
Autor: Natalie1988

Gibts denn eine Operatorrangfolge, die gesagt, was zuerst berechnet werden muss (wie bei "Punkt vor Strich") bei der Faltung und dem Gradienten?

[mm] $\nabla_x [/mm] (U [mm] \* \rho)\ [/mm] $ würde wirklich mehr Sinn machen, da $U$ und [mm] $\rho$ [/mm] beide nach [mm] $\IR$ [/mm] abbilden. Ich denke, dass die Abhängigkeit von [mm] $\rho$ [/mm] von $t$ kein Problem ist, da ich die Faltung über $x$ betrachte.

Wenn ich zuerst die Faltung anwende, bekomme ich ja den Gradienten eines Integrals.

Bezug
                        
Bezug
Faltung von IR^d mit IR: Antwort
Status: (Antwort) fertig Status 
Datum: 02:46 Do 20.03.2014
Autor: Marcel

Hallo,

> Gibts denn eine Operatorrangfolge, die gesagt, was zuerst
> berechnet werden muss (wie bei "Punkt vor Strich") bei der
> Faltung und dem Gradienten?

nicht, dass ich wüßte - normalerweise ist die Rangfolge die, die man
"sieht".
Aber manche Leute schreiben halt nicht immer alles so, dass es eindeutig
erkennbar ist, weil sie sich denken, dass klar ist, dass nur das gemeint
sein kann, was Sinn macht.

Z.B. wenn, der Einfachheit wegen

    $f,g [mm] \colon \IR \to \IR$ [/mm]

sind, dann sieht man manchmal die Notation

    $f + [mm] g(x)\,,$ [/mm]

welche als

    $(f + g)(x)$ [mm] ($:=f(x)+g(x)\,$) [/mm]

gemeint ist. Denn es ist unsinnig, die Funktion [mm] $f\,$ [/mm] zu dem Funktionswert
[mm] $g(x)\,$ [/mm] zu addieren. (Das hier ist jetzt eher ein künstliches Beispiel, es
gibt sicher bessere - jedenfalls hatte ich mal bessere gesehen, aber die
wollen mir gerade nicht einfallen.)

> [mm]\nabla_x (U \* \rho)\[/mm] würde wirklich mehr Sinn machen, da
> [mm]U[/mm] und [mm]\rho[/mm] beide nach [mm]\IR[/mm] abbilden. Ich denke, dass die
> Abhängigkeit von [mm]\rho[/mm] von [mm]t[/mm] kein Problem ist, da ich die
> Faltung über [mm]x[/mm] betrachte.

Ja - man kann aber, mit dem, was ich gesagt habe, auch die Faltung
"bzgl. [mm] $x\,$" [/mm] machen und der Wert hat dann trotzdem noch eine Zusatzabhängigkeit
von [mm] $t\,.$ [/mm] D.h. im Endeffekt steht dann sowas da wie

    $(x,t) [mm] \mapsto \glqq\text{Faltungswert bzgl. }x \text{ hängt auch von }t\text{ ab}\grqq$ [/mm]
  

> Wenn ich zuerst die Faltung anwende, bekomme ich ja den
> Gradienten eines Integrals.  

Ja, Du bildest quasi den [mm] "$x\,$-Gradienten" [/mm] der (auch von [mm] $t\,$ [/mm] abhängigen)
"Faltungsfunktion"

    $(x,t) [mm] \mapsto \int_{\tau \in \IR^d} U(\tau) \rho(x-\tau,t) d\tau$ [/mm]

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de