www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Faltungssatz
Faltungssatz < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faltungssatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:20 So 12.12.2010
Autor: DoubleHelix

Aufgabe
Mit Hilfe der Laplacetransformation und dem Faltungssatz löse man folgende Faltungsgleichungen:

[mm] \integral_{0}^{x}{y(t)*sin(x-t)dt}=y(x)+x [/mm]


Hallo,
Ich kenne Faltungssatzaufgaben nur in der Form, dass mann eine DGL löst z.B. über eine Laplace-Transformation, wobei man die Transformierte in zwei Teile aufteilen kann und nach Rücktransformation 2 funktionen [mm] f_1 [/mm] und [mm] f_2 [/mm] vorfindet.
Dann lautet der Faltungssatz: [mm] f_1\*f_2=\integral_{0}^{t}{f_1(u)*f_2(t-u)du}. [/mm]

Leider weiss ich nicht so recht wie ich bei der gestellten Aufgabe herangehen soll.
Bitte um Hilfe.



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Faltungssatz: Antwort
Status: (Antwort) fertig Status 
Datum: 09:25 So 12.12.2010
Autor: fred97


> Mit Hilfe der Laplacetransformation und dem Faltungssatz
> löse man folgende Faltungsgleichungen:
>  
> [mm]\integral_{0}^{x}{y(t)*sin(x-t)dt}=y(x)+x[/mm]
>  
> Hallo,
>  Ich kenne Faltungssatzaufgaben nur in der Form, dass mann
> eine DGL löst z.B. über eine Laplace-Transformation,
> wobei man die Transformierte in zwei Teile aufteilen kann
> und nach Rücktransformation 2 funktionen [mm]f_1[/mm] und [mm]f_2[/mm]
> vorfindet.
>  Dann lautet der Faltungssatz:
> [mm]f_1\*f_2=\integral_{0}^{t}{f_1(u)*f_2(t-u)du}.[/mm]
>  
> Leider weiss ich nicht so recht wie ich bei der gestellten
> Aufgabe herangehen soll.


Wende auf




$ [mm] \integral_{0}^{x}{y(t)\cdot{}sin(x-t)dt}=y(x)+x [/mm] $

links und rechts die L-Transformation an und schau was passiert.


FRED

>  Bitte um Hilfe.
>  
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Faltungssatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:07 So 12.12.2010
Autor: DoubleHelix

Danke für die Antwort!
Habe jetzt einmal die L-Transformation angewendet. Die Gleichung sieht dann so aus:
[mm] F_1(s)*F_2(s)=F(s)+1/s^2 [/mm]

Mein Vorgehen: Den Rechten Teil der Gleichung hab ich über das L-Integral transormiert: [mm] \integral_{0}^{\infty}{(y(x)+x)*e^{-s*x} dx}=-1/s*x*e^{-sx}-1/(s^2)*e^{-sx} [/mm] in den Grenzen von [mm] 0,\infty. [/mm]
Der Linke Teil sieht ganz nach folgender regel aus: [mm] L\{\integral_{0}^{x}{f (t)*g(x-t)dt}\}= [/mm] F(s).G(s)

ich steh irgendwie noch auf der Leitung :-D Stimmt meine Vorgehensweise?

Bezug
                        
Bezug
Faltungssatz: Antwort
Status: (Antwort) fertig Status 
Datum: 12:13 So 12.12.2010
Autor: fred97


> Danke für die Antwort!
>  Habe jetzt einmal die L-Transformation angewendet. Die
> Gleichung sieht dann so aus:
>  [mm]F_1(s)*F_2(s)=F(s)+1/s^2[/mm]
>  
> Mein Vorgehen: Den Rechten Teil der Gleichung hab ich über
> das L-Integral transormiert:
> [mm]\integral_{0}^{\infty}{(y(x)+x)*e^{-s*x} dx}=-1/s*x*e^{-sx}-1/(s^2)*e^{-sx}[/mm]
> in den Grenzen von [mm]0,\infty.[/mm]
>  Der Linke Teil sieht ganz nach folgender regel aus:
> [mm]L\{\integral_{0}^{x}{f (t)*g(x-t)dt}\}=[/mm] F(s).G(s)
>  
> ich steh irgendwie noch auf der Leitung :-D Stimmt meine
> Vorgehensweise?


Es geht einfacher: es ist doch [mm] F_1=F [/mm]  und [mm] F_2 [/mm] hast Du doch handfest im Griff !!

FRED


Bezug
                                
Bezug
Faltungssatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:42 So 12.12.2010
Autor: DoubleHelix

Wenn [mm] F_1=F(s) [/mm] dann kann ich nach [mm] F_2(s) auflösen:F_2(s)=1+1/F(s)*1/s^2 [/mm] und dann rücktransformieren?

Bezug
                                        
Bezug
Faltungssatz: Antwort
Status: (Antwort) fertig Status 
Datum: 14:13 So 12.12.2010
Autor: MathePower

Hallo DoubleHelix,

> Wenn [mm]F_1=F(s)[/mm] dann kann ich nach [mm]F_2(s) auflösen:F_2(s)=1+1/F(s)*1/s^2[/mm]
> und dann rücktransformieren?  


Ja.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de