www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Familien von Vektorräumen
Familien von Vektorräumen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Familien von Vektorräumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:33 Mi 05.12.2007
Autor: easy2311

Aufgabe
Seien V ein K-Vektorraum und W' und W´´ k-lineare Unterräume.
(i) Zeigen Sie [mm] W'\cap [/mm] W'' ist K-lin. Unterraum.
(ii) Zeigen Sie W'+W'' ist K-lin. Unterraum von V.
(iii) Verallgemeinern Sie die Aussagen (i)



Die Aufgaben (i) und (ii) habe ich bereits gelöst. Bei den Familien weiß ich nun nich was ich genau zeigen soll. Unsere Seminarleiter meinte: Was tritt für eine Eischränkung im abzählbar unendlichen Fall auf? Naja, das es eine Summe gibt von Variablen, die ja nie endet, weil die menge ja unendlich ist...

        
Bezug
Familien von Vektorräumen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:56 Do 06.12.2007
Autor: angela.h.b.


> Seien V ein K-Vektorraum und W' und W´´ k-lineare
> Unterräume.
>  (i) Zeigen Sie [mm]W'\cap[/mm] W'' ist K-lin. Unterraum.
>  (ii) Zeigen Sie W'+W'' ist K-lin. Unterraum von V.
>  (iii) Verallgemeinern Sie die Aussagen (i)
>  
>
> Die Aufgaben (i) und (ii) habe ich bereits gelöst. Bei den
> Familien weiß ich nun nich was ich genau zeigen soll.

Hallo,

hast Du daran gedacht, daß wir Dich nicht ins Seminar begleiten?
Welche Familien bitte?

> Unsere Seminarleiter meinte: Was tritt für eine
> Eischränkung im abzählbar unendlichen Fall auf? Naja, das
> es eine Summe gibt von Variablen, die ja nie endet, weil
> die menge ja unendlich ist...

Was genau ist denn Deine Frage?

Nun gut, ohne die Frage zu kennen, gebe ich trotzdem mal eine Antwort: in der linearen Algebra sind Linearkombinationen immer endlich, daher kann man nur endliche Summen v. Vektoren betrachten,
mit der Folge, daß man sich erstmal überlegen müßte, wie man [mm] W_1+W_2+W_3+... [/mm] sinnvoll definiert.

Gruß v. Angela



Bezug
                
Bezug
Familien von Vektorräumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:55 Do 06.12.2007
Autor: easy2311

Manchmal funktioniert da hier nicht richtig mit dem eintippen. die Aufgabe (iii) war: Verallgemeinern Sie die Aussagen (i) und (ii) auf den Fall beliebiger Familien von Vektorräumen.
Es hat also die Hälfte gefehlt bei der Aufgabenstellung, tut mir leid, war keine böse Absicht!
Naja auf jeden Fall sollen wir halt den unendl. abzählbaren Raum betrachten und sagen was dort für eine Einschränkung auftritt. Man kann keine Summe von einer unendl Menge bilden???

Bezug
                        
Bezug
Familien von Vektorräumen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:03 Do 06.12.2007
Autor: angela.h.b.


>  Naja auf jeden Fall sollen wir halt den unendl.
> abzählbaren Raum betrachten

Was ist denn damit gemeint?

> und sagen was dort für eine
> Einschränkung auftritt. Man kann keine Summe von einer
> unendl Menge bilden???

Doch, Du kannst ja durchaus [mm] <\vektor{1 \\ 0}>+<\vektor{0 \\ 1}> [/mm] bilden, und beide Räume haben keine endliche Anzahl von Elementen.

Aber schau mal in Deinem Skript nach, wie Linearkombination definiert ist.
Du kannst nicht unendlich viele Vektoren summieren, Linearkombinationen sind endliche Summen.

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de