www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Fehler im Beweis finden
Fehler im Beweis finden < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fehler im Beweis finden: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:24 So 13.04.2008
Autor: suburbian2

Aufgabe
Finden Sie den Fehler in folgendem Beweis:

a) [mm]1=\limes_{n\rightarrow\infty}\bruch{n}{n}=\limes_{n\rightarrow\infty}(n \cdot(\bruch{1}{n}))=\limes_{n\rightarrow\infty}(n \cdot (\limes_{n\rightarrow\infty}\bruch{1}{n}))=\limes_{n\rightarrow\infty}(n \cdot 0)=\limes_{n\rightarrow\infty}0=0[/mm]

Hi

Bräuchte ein wenig Hilfestellung bei dieser Aufgabe.

Also ich habe 2 Stellen an denen ich sagen würde, das kann doch so nicht sein aber ich hab halt immer auch das Problem, dass ich nicht alle relevanten Regeln immer im Kopf parat habe.

1. - [mm]\limes_{n\rightarrow\infty}\bruch{n}{n}[/mm] - unendlich durch unendlich? Das kommt mir auch ein wenig seltsam vor ist das denn definiert?

2. - [mm]\limes_{n\rightarrow\infty}(n\cdot (\limes_{n\rightarrow\infty}\bruch{1}{n}))[/mm] - geht das denn? Kann man einen Limes in einen anderen Verschachteln?

3. Ich meine das eins nicht gleich null ist ist klar aber das ändert sich ja sicherlich, wenn man den Fehler findet.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Fehler im Beweis finden: Antwort
Status: (Antwort) fertig Status 
Datum: 14:45 So 13.04.2008
Autor: MathePower

Hallo suburbian2,

> Finden Sie den Fehler in folgendem Beweis:
>  
> a)
> [mm]1=\limes_{n\rightarrow\infty}\bruch{n}{n}=\limes_{n\rightarrow\infty}(n \cdot(\bruch{1}{n}))=\limes_{n\rightarrow\infty}(n \cdot (\limes_{n\rightarrow\infty}\bruch{1}{n}))=\limes_{n\rightarrow\infty}(n \cdot 0)=\limes_{n\rightarrow\infty}0=0[/mm]
>  
> Hi
>  
> Bräuchte ein wenig Hilfestellung bei dieser Aufgabe.
>  
> Also ich habe 2 Stellen an denen ich sagen würde, das kann
> doch so nicht sein aber ich hab halt immer auch das
> Problem, dass ich nicht alle relevanten Regeln immer im
> Kopf parat habe.
>
> 1. - [mm]\limes_{n\rightarrow\infty}\bruch{n}{n}[/mm] - unendlich
> durch unendlich? Das kommt mir auch ein wenig seltsam vor
> ist das denn definiert?

Sicher ist das definiert, entweder ist das [mm]\pm \infty[/mm] oder hat einen bestimmten Wert.

>  
> 2. - [mm]\limes_{n\rightarrow\infty}(n\cdot (\limes_{n\rightarrow\infty}\bruch{1}{n}))[/mm]
> - geht das denn? Kann man einen Limes in einen anderen
> Verschachteln?

Eben das geht nicht, wenn die Variablen dieselben sind.

[mm]\limes_{\blue{n}\rightarrow\infty}(\blue{n}\cdot (\limes_{\blue{n}\rightarrow\infty}\bruch{1}{\blue{n}}))[/mm]

>  
> 3. Ich meine das eins nicht gleich null ist ist klar aber
> das ändert sich ja sicherlich, wenn man den Fehler findet.
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß
MathePower


Bezug
                
Bezug
Fehler im Beweis finden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:07 So 13.04.2008
Autor: suburbian2

Ok vielen Dank. Dann war ich ja nicht so ganz auf dem Holzweg.

grüße

sub

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de