www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Fehlerbetrachtung
Fehlerbetrachtung < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fehlerbetrachtung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:29 Mo 02.07.2012
Autor: BarneyS

Aufgabe
Parallelschaltung. Bei Parallelschaltung zweier Widerstande x und y berechnet sich der Gesamtwiderstand f durch
[mm] $f(x,y)=\bruch{1}{\bruch{1}{x}+\bruch{1}{y}} [/mm] $
Nehmen Sie an, dass die Werte x = 100 [mm] \pm \delta [/mm] , y = 400 [mm] \pm \delta [/mm]  mit einem absoluten Fehler [mm] \delta [/mm] = 5
gemessen wurden.

Schätzen Sie den absoluten Fehler von f mit Hilfe der Fehlerfortpflanzungsformel:
$ |f(x',y')-f(x,y)| [mm] \approx |\partial_x f(x,y)|*|x'-x|+|\partial_y [/mm] f(x,y)|*|y'-y| $
ab.



[mm] $\partial_x f(x,y)=\bruch{y^2}{(y+x)^2}$ [/mm]
[mm] $\partial_y f(x,y)=\bruch{x^2}{(y+x)^2}$ [/mm]

Dann ergibt sich:

Absoluter Fehler $ [mm] \approx \bruch{y^2}{(y+x)^2}*|x'-x|+\bruch{x^2}{(y+x)^2}*|y'-y|$ [/mm]

So jetzt muss ich nur noch die Werte von oben einsetzen.
Aber welche? Für x'-x und y'-y jeweils delta, also 5?
Und sonst so, dass die Terme maximal groß werden, also jeweils einmal 405, 395, 95 und 105 oder die Messwerte 100 und 400?

Danke euch für Hinweise!


Edit:

Ich denke, dass man für y 400, für x 100 und für die Beträge |x'-x| und |y'-y| jeweils 5 einsetzen muss...
alles andere macht keinen Sinn.

Das macht dann 3,2 + 0,2 = 3,4

        
Bezug
Fehlerbetrachtung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:12 Mo 02.07.2012
Autor: ullim

Hi,

der absolute Fehler berechnet sich ja zu

[mm] \Delta{f}=|f(x+\Delta{x},y+\Delta{y})-f(x,y)| [/mm]

Also muss man für x=100, y=400 und [mm] \Delta=5 [/mm] einsetzen.

Bezug
                
Bezug
Fehlerbetrachtung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:47 Mo 02.07.2012
Autor: BarneyS

Erstmal danke!

Allerdings beantwortet das meine Frage nicht, oder ich verstehe deine Antwort nicht.

In der Aufgabenstellung ist ja nun eine Formel vorgegeben. Warum kommst du mit dieser neuen Formel? Ich wollte nur wissen, welche Werte ich einsetzen muss.

Bezug
                        
Bezug
Fehlerbetrachtung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:43 Di 03.07.2012
Autor: ullim

Hi,

das ist keine neue Formel sondern die gleiche wie in Deinem ersten Post mit [mm] x'=x+\Delta{x} [/mm] und [mm] y'=y+\Delta{y} [/mm]

also

[mm] \Delta{f}=|f(x',y')-f(x,y)| \approx |\partial_x f(x,y)|\cdot{}|x'-x|+|\partial_y f(x,y)|\cdot{}|y'-y| [/mm]

Und wie Du richtig bemerkt hast macht es nur Sinn x=100, y=400 und [mm] \Delta{x}=\Delta{y}=5 [/mm] einzusetzen und das Ergebnis ist auch richtig.



Bezug
                                
Bezug
Fehlerbetrachtung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:42 Di 03.07.2012
Autor: BarneyS


> Hi,
>  
> das ist keine neue Formel sondern die gleiche wie in Deinem
> ersten Post mit [mm]x'=x+\Delta{x}[/mm] und [mm]y'=y+\Delta{y}[/mm]
>  
> also
>  
> [mm]\Delta{f}=|f(x',y')-f(x,y)| \approx |\partial_x f(x,y)|\cdot{}|x'-x|+|\partial_y f(x,y)|\cdot{}|y'-y|[/mm]
>  
> Und wie Du richtig bemerkt hast macht es nur Sinn x=100,
> y=400 und [mm]\Delta{x}=\Delta{y}=5[/mm] einzusetzen und das
> Ergebnis ist auch richtig.
>  
>  

Hallo ullim,

ich kann immer noch nicht nachvollziehen, was du meinst.
x' und y' sind ja die gemessenen Werte und x und y sind die exakten Werte. delta f (linke Siete der Gleichung) ist somit der absolute Fehler, der tatsächlich gemacht wurde. Diesen kann man aber niemals genau kennen, sondern nur approximieren. Und das kann man dann mit der rechten Seite der Gleichung.

Wenn man das so berechnet, wie du sagst, dann kommt 3,824 heraus und nicht 3,4, was die rechte Seite ergibt.

Und warum setzt man nicht für $ x' = x - [mm] \delta [/mm] $ statt $ x + [mm] \delta [/mm] $ ein? Dann bekommt man ein anderes Ergebnis heraus...

Bezug
                                        
Bezug
Fehlerbetrachtung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:29 Di 03.07.2012
Autor: MathePower

Hallo BarneyS,


> > Hi,
>  >  
> > das ist keine neue Formel sondern die gleiche wie in Deinem
> > ersten Post mit [mm]x'=x+\Delta{x}[/mm] und [mm]y'=y+\Delta{y}[/mm]
>  >  
> > also
>  >  
> > [mm]\Delta{f}=|f(x',y')-f(x,y)| \approx |\partial_x f(x,y)|\cdot{}|x'-x|+|\partial_y f(x,y)|\cdot{}|y'-y|[/mm]
>  
> >  

> > Und wie Du richtig bemerkt hast macht es nur Sinn x=100,
> > y=400 und [mm]\Delta{x}=\Delta{y}=5[/mm] einzusetzen und das
> > Ergebnis ist auch richtig.
>  >  
> >  

> Hallo ullim,
>  
> ich kann immer noch nicht nachvollziehen, was du meinst.
>  x' und y' sind ja die gemessenen Werte und x und y sind
> die exakten Werte. delta f (linke Siete der Gleichung) ist
> somit der absolute Fehler, der tatsächlich gemacht wurde.
> Diesen kann man aber niemals genau kennen, sondern nur
> approximieren. Und das kann man dann mit der rechten Seite
> der Gleichung.
>  
> Wenn man das so berechnet, wie du sagst, dann kommt 3,824


Hier meinst Du wohl:

[mm]\vmat{f\left(x+\Delta x,y+\Delta y\right)-f\left(x,y\right)} \approx 3,3824[/mm]


> heraus und nicht 3,4, was die rechte Seite ergibt.
>
> Und warum setzt man nicht für [mm]x' = x - \delta[/mm] statt [mm]x + \delta[/mm]
> ein? Dann bekommt man ein anderes Ergebnis heraus...


Gruss
MathePower

Bezug
                                                
Bezug
Fehlerbetrachtung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:05 Di 03.07.2012
Autor: BarneyS

Hey MathePower,

ja, das meine ich.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de