www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Fibonacci-Zahl
Fibonacci-Zahl < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fibonacci-Zahl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:09 Mi 09.12.2015
Autor: Gooly

Hallo,
Ich weiß die Fib.-Reihe ergibt sich nach:

    [mm] f_{n} [/mm] = [mm] f_{n-1} [/mm] + [mm] f_{n-2} [/mm]

und das n-te Element erhalte ich durch:

    [mm] f_{n} [/mm] = [mm] \bruch{1}{\wurzel{5}}\*( (\bruch{1+\wurzel{5}}{2})^n [/mm] - [mm] (\bruch{1-\wurzel{5}}{2})^n) [/mm]

Gibt es eine einfache Formel oder Regel mit der ich die vorherige einer gegebenen Fib.-Zahl erhalte, wenn mir nur diese eine bekannt ist?

Beispielsweise habe ich nur 144 und suche die vorherige Fib.Zahl 85, aber ohne entweder von 1 aufzusummieren bis 144 oder mit der o.a. Formel alle n ab 1 durchzuprobieren.

Gibt's das, geht das?

Vielen Dank!

PS: hab's schon gefunden. Vorgänger ~ Fib.Zahl/1,618

        
Bezug
Fibonacci-Zahl: Antwort
Status: (Antwort) fertig Status 
Datum: 23:27 Mi 09.12.2015
Autor: Chris84


> Hallo,

Huhu :)

>  Ich weiß die Fib.-Reihe ergibt sich nach:

Folge, nicht Reihe!

>  
> [mm]f_{n}[/mm] = [mm]f_{n-1}[/mm] + [mm]f_{n-2}[/mm]
>  
> und das n-te Element erhalte ich durch:

>  
> [mm]f_{n}[/mm] = [mm]\bruch{1}{\wurzel{5}}\*( (\bruch{1+\wurzel{5}}{2})^n[/mm]
> - [mm](\bruch{1-\wurzel{5}}{2})^n)[/mm]

wenn die Anfangswerte [mm] $f_1=1$ [/mm] und [mm] $f_2=1$ [/mm] sind.

>  
> Gibt es eine einfache Formel oder Regel mit der ich die
> vorherige einer gegebenen Fib.-Zahl erhalte, wenn mir nur
> diese eine bekannt ist?

Interessante Frage:
Was du doch eig. nur machen muesstest, ist die Gleichung [mm] $f_n=...$ [/mm] nach $n$ umzustellen. Dann weisst du, an welcher Stelle quasi deine Fibonaccizahl steht und kannst $n-1$ in die Formel einsetzen.
Hast du dir mal den Wikipedia Artikel zu den Fibonaccizahlen durchgelesen? Da siehst du insbesondere, dass du [mm] $f_n$ [/mm] auch schreiben kannst als

[mm] $f_n=\frac{1}{\sqrt{5}} \left[\Phi^n-\left(-\frac{1}{\Phi}\right)^n\right]$ [/mm]

mit [mm] $\Phi [/mm] = [mm] \frac{1+\sqrt{5}}{2}$. [/mm]

Bei gegebenem [mm] $f_n$ [/mm] muesstest  du diese Gleichung nach $n$ aufloesen koennen.


>  
> Beispielsweise habe ich nur 144 und suche die vorherige
> Fib.Zahl 85, aber ohne entweder von 1 aufzusummieren bis
> 144 oder mit der o.a. Formel alle n ab 1 durchzuprobieren.
>  
> Gibt's das, geht das?

Sieht so aus ;)

>  
> Vielen Dank!
>  
> PS: hab's schon gefunden. Vorgänger ~ Fib.Zahl/1,618

Das ist nur eine (An)naeherung (siehe Wikipedia!).

Gruss,
Chris

Bezug
        
Bezug
Fibonacci-Zahl: Antwort
Status: (Antwort) fertig Status 
Datum: 09:31 Do 10.12.2015
Autor: Gonozal_IX

Hiho,

es geht auch ohne umstellen nach n.
Ein bisschen Umformen der expliziten Darstellung liefert:

[mm] $f_{n-1} [/mm] = [mm] 2f_n [/mm] - [mm] \left(\frac{1+\sqrt{5}}{2}\right)^{n-1} [/mm] - [mm] \left(\frac{1-\sqrt{5}}{2}\right)^{n-1}$ [/mm]

Was genau das ist, was du haben willst.
Einziges Manko: Dir muss neben der Fibonacci-Zahl auch bekannt sein, welche es ist.

Gruß,
Gono

Bezug
                
Bezug
Fibonacci-Zahl: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:49 Do 10.12.2015
Autor: Chris84


> Hiho,

Huhu :)

>  
> es geht auch ohne umstellen nach n.
>  Ein bisschen Umformen der expliziten Darstellung liefert:
>  
> [mm]f_{n-1} = 2f_n - \left(\frac{1+\sqrt{5}}{2}\right)^{n-1} - \left(\frac{1-\sqrt{5}}{2}\right)^{n-1}[/mm]
>  

Huebsch :)

> Was genau das ist, was du haben willst.
>  Einziges Manko: Dir muss neben der Fibonacci-Zahl auch
> bekannt sein, welche es ist.

Ich glaube, wenn ich es richtig verstanden habe, dass genau DAS das Problem ist. Es sei eben z.B. nur 144 als Fibonaccizahl gegeben und nichts weiteres. Und dann muss man erstmal herausfinden, um welche Fibonaccizahl es sich handelt. Oder uebersehe ich gerade irgendwas? :)

>  
> Gruß,
>  Gono  

Gruss,
Chris


Bezug
                        
Bezug
Fibonacci-Zahl: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:29 Do 10.12.2015
Autor: hippias

Ist $f$ eine Fib.zahl, so ist ihr Index einer der $4$ Werte [mm] $\log_{\alpha}\left(\frac{\sqrt{5}f}{2}\pm\sqrt{\frac{5f^2}{4}\pm 1}\right)$, [/mm] wobei [mm] $\alpha= \frac{1+\sqrt{5}}{2}$. [/mm]

Wenn ich mich nicht verrechnet habe, dann sollte es möglich sein, dies noch weiter einzuschränken. Ist $n$ gerade, so ist die zweite Zahl $+1$. Das erste Minus, kann nur mit $-1$ unter der Wurzel kombiniert werden.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de