www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Fibonacci-Zahlen
Fibonacci-Zahlen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fibonacci-Zahlen: Tipp
Status: (Frage) beantwortet Status 
Datum: 12:00 Mo 11.08.2008
Autor: johnny11

Aufgabe
Die Fibonacci-Zahlen 0,1,1,2,3,5,8,... sind durch die Rekursionsformel [mm] f_n [/mm] = [mm] f_{n-1} [/mm] + [mm] f_{n-2} [/mm] und die Startwerte [mm] f_0 [/mm] = 0 und [mm] f_1 [/mm] = 1 definiert. Die Rekursionsformel kann man auch in Matrixform darstellen:

[mm] \pmat{ 0 & 1 \\ 1 & 1 } [/mm] * [mm] \vektor{f_{n-2} \\ f_{n-1} } [/mm] = [mm] \vektor{f_{n-1} \\ f_{n} } [/mm]

Nehmen wir an, die Folge [mm] a_n [/mm] sei durch die Rekursionsformel [mm] \bruch{1}{2}(a_{n-1} [/mm] + [mm] a_{n-2}) [/mm] definiert. Man berechne lim [mm] a_n [/mm] aus den Startwerten [mm] a_0 [/mm] und [mm] a_1 [/mm]

Wie kann ich hier am besten anfangen?
Muss ich den Limes mit Hilfe der angegebenen Matrizen lösen?
Blicke gerade nicht so durch...

        
Bezug
Fibonacci-Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:21 Mo 11.08.2008
Autor: steppenhahn

Hallo!

> Die Fibonacci-Zahlen 0,1,1,2,3,5,8,... sind durch die
> Rekursionsformel [mm]f_n[/mm] = [mm]f_{n-1}[/mm] + [mm]f_{n-2}[/mm] und die Startwerte
> [mm]f_0[/mm] = 0 und [mm]f_1[/mm] = 1 definiert. Die Rekursionsformel kann
> man auch in Matrixform darstellen:
>  
> [mm]\pmat{ 0 & 1 \\ 1 & 1 }[/mm] * [mm]\vektor{f_{n-2} \\ f_{n-1} }[/mm] =
> [mm]\vektor{f_{n-1} \\ f_{n} }[/mm]
>  
> Nehmen wir an, die Folge [mm]a_n[/mm] sei durch die Rekursionsformel
> [mm]\bruch{1}{2}(a_{n-1}[/mm] + [mm]a_{n-2})[/mm] definiert. Man berechne lim
> [mm]a_n[/mm] aus den Startwerten [mm]a_0[/mm] und [mm]a_1[/mm]
>  
> Wie kann ich hier am besten anfangen?
>  Muss ich den Limes mit Hilfe der angegebenen Matrizen
> lösen?
>  Blicke gerade nicht so durch...

Du Vermutung läuft ja darauf hinaus, dass die Folge gegen Unendlich konvergiert für n gegen Unendlich. Dafür braucht man nicht zu rechnen. Wenn man jetzt aber den konkreten Wert von [mm] a_{n} [/mm] bestimmen will für ein beliebiges n, so geht man folgendermaßen vor:

1. Bestimmte wie oben eine Matrix A, welche dann die Gleichung erfüllt:

[mm]A*\vektor{f_{n-2} \\ f_{n-1} } = \vektor{f_{n-1} \\ f_{n} }[/mm]

2. In gewisser Weise hast du nun eine lineare Abbildung [mm]g:x\mapsto Ax[/mm] definiert, wenn du

[mm]\vektor{f_{0} \\ f_{1} } := x_{1}[/mm]

[mm]\vektor{f_{n-2} \\ f_{n-1} } := x_{n-1}[/mm]

und

[mm]\vektor{f_{n-1} \\ f_{n} } := x_{n}[/mm]

festlegst. Es gilt dann

[mm]x_{n} = g(x_{n-1}) = g^{2}(x_{n-2}) = ... = g^{n-1}(x_{1})[/mm],

was gleichbedeutend ist mit:

[mm]x_{n} = A*x_{n-1} = A^{2}*x_{n-2} = ... = A^{n-1}*x_{1}[/mm].

Wie kannst du nun am besten [mm] x_{n} [/mm] = [mm] A^{n-1} [/mm] für beliebiges n berechnen??? Dafür hast du sicher eine Möglichkeit kennen gelernt! (Fängt mit D an!)

Stefan.

Bezug
                
Bezug
Fibonacci-Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:41 Mo 11.08.2008
Autor: johnny11

Hallo steppenhahn,
Vielen Dank für deine Hilfe.

> Wie kannst du nun am besten [mm]x_{n}[/mm] = [mm]A^{n-1}[/mm] für beliebiges
> n berechnen??? Dafür hast du sicher eine Möglichkeit kennen
> gelernt! (Fängt mit D an!)
>  


Mir ist nun einfach nur noch nicht ganz klar, wie ich dieses [mm] A^{n-1} [/mm] berechnen kann. Dies haben wir - meines Wissens nach - nie in der Vorlesung behandelt. Mit "D" kommt mir nur Determinante oder diagonalisieren in den Sinn...?

Bezug
                        
Bezug
Fibonacci-Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:48 Mo 11.08.2008
Autor: Somebody


> Hallo steppenhahn,
>  Vielen Dank für deine Hilfe.
>  
> > Wie kannst du nun am besten [mm]x_{n}[/mm] = [mm]A^{n-1}[/mm] für beliebiges
> > n berechnen??? Dafür hast du sicher eine Möglichkeit kennen
> > gelernt! (Fängt mit D an!)
>  >  
>
>
> Mir ist nun einfach nur noch nicht ganz klar, wie ich
> dieses [mm]A^{n-1}[/mm] berechnen kann. Dies haben wir - meines
> Wissens nach - nie in der Vorlesung behandelt. Mit "D"
> kommt mir nur Determinante oder diagonalisieren in den
> Sinn...?

Diagonalisieren hat er gemeint, denn die $n$-te Potenz einer Diagonalmatrix $D$ ist sehr einfach zu berechnen: die Diagonalelemente von [mm] $D^n$ [/mm] sind einfach die $n$-ten Potenzen der Diagonalelemente von $D$. Ist etwa $A := [mm] T\circ D\circ T^{-1}$, [/mm] dann ist [mm] $A^n=\left(T\circ D\circ T^{-1}\right)^n=T\circ D^n\circ T^{-1}$. [/mm] Sobald Du also $D$ und $T$ kennst, ist [mm] $A^n$ [/mm] relativ leicht zu berechnen.


Bezug
                                
Bezug
Fibonacci-Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:07 Mo 11.08.2008
Autor: johnny11

Super, jetzt ists klar. Vielen Dank. :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de