www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Fibonacci-Zahlen, Grenzwert
Fibonacci-Zahlen, Grenzwert < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fibonacci-Zahlen, Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:18 Mi 19.05.2010
Autor: Calculu

Aufgabe
Zeigen Sie, dass der Grenzwert [mm] \limes_{n\rightarrow\infty}\bruch{F _{n+1}}{F_n} [/mm] existiert und berechnen Sie ihn.

So, also ich möchte berechnen. Kann ich die Formel von Moive Binet einsetzen und Zähler und Nenner getrennt betrachten, oder ist das nicht zulässig?

Viele Dank

Calculu

        
Bezug
Fibonacci-Zahlen, Grenzwert: nicht getrennt
Status: (Antwort) fertig Status 
Datum: 13:22 Mi 19.05.2010
Autor: Roadrunner

Hallo Calculu!


Wenn die []Formel nach Moivre-Binet bekannt ist, darfst Du diese auch gerne verwenden.

Allerdings darfst Du nicht Zähler und Nenner getrannt behandeln: schließlich steigt die Fibonacci-Folge über alle Grenzen.


Gruß vom
Roadrunner


Bezug
                
Bezug
Fibonacci-Zahlen, Grenzwert: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:27 Mi 19.05.2010
Autor: Calculu

Hm, ok.
Also die Formel ist bekannt. Funktioniert es dann nur durch geschicktes umformen und letztlich irgendwie Hauptnenner bilden oder muss ich etwas abschätzen.
Ein Tipp wäre sehr cool ;-)

VG

Bezug
                        
Bezug
Fibonacci-Zahlen, Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 14:09 Mi 19.05.2010
Autor: angela.h.b.


> Hm, ok.
> Also die Formel ist bekannt. Funktioniert es dann nur durch
> geschicktes umformen und letztlich irgendwie Hauptnenner
> bilden oder muss ich etwas abschätzen.

Hallo,

abschätzen muß ich nichts, sondern oben und unten ausklammern, kürzen und den Grenzwert bilden.

Einen konkreten Tip kann man sicher besser geben, wenn man sieht, was Du bisher getan hast...

Gruß v. Angela

Bezug
                                
Bezug
Fibonacci-Zahlen, Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:27 Mi 19.05.2010
Autor: Calculu

Ok, also ich habe bis jetzt folgendes gemacht:

[mm] \limes_{n\rightarrow\infty} \bruch{Fn+1}{Fn} [/mm]

= [mm] \limes_{n\rightarrow\infty} \bruch{\bruch{1}{\wurzel{5}}*((\bruch{1+\wurzel{5}}{5})^{n+1}-(\bruch{1-\wurzel{5}}{5})^{n+1})}{\bruch{1}{\wurzel{5}}*((\bruch{1+\wurzel{5}}{5})^{n}-(\bruch{1-\wurzel{5}}{5})^{n})} [/mm]

=  [mm] \limes_{n\rightarrow\infty} \bruch{((\bruch{1+\wurzel{5}}{5})^{n+1}-(\bruch{1-\wurzel{5}}{5})^{n+1})}{((\bruch{1+\wurzel{5}}{5})^{n}-(\bruch{1-\wurzel{5}}{5})^{n})} [/mm]

=  [mm] \limes_{n\rightarrow\infty} \bruch{(\bruch{1+\wurzel{5}}{5})^{n}*\bruch{1+\wurzel{5}}{5}-(\bruch{1-\wurzel{5}}{5})^{n}*\bruch{1-\wurzel{5}}{5}}{((\bruch{1+\wurzel{5}}{5})^{n}-(\bruch{1-\wurzel{5}}{5})^{n})} [/mm]


So, und jetzt stören mich das Minus bei [mm] 1-\wurzel{5} [/mm]
Ansonsten könnte ich ja ausklammern...


Bezug
                                        
Bezug
Fibonacci-Zahlen, Grenzwert: Polynomdivision
Status: (Antwort) fertig Status 
Datum: 14:49 Mi 19.05.2010
Autor: Roadrunner

Hallo Calculu!


> = [mm]\limes_{n\rightarrow\infty} \bruch{\bruch{1}{\wurzel{5}}*((\bruch{1+\wurzel{5}}{5})^{n+1}-(\bruch{1-\wurzel{5}}{5})^{n+1})}{\bruch{1}{\wurzel{5}}*((\bruch{1+\wurzel{5}}{5})^{n}-(\bruch{1-\wurzel{5}}{5})^{n})}[/mm]
>  
> =  [mm]\limes_{n\rightarrow\infty} \bruch{((\bruch{1+\wurzel{5}}{5})^{n+1}-(\bruch{1-\wurzel{5}}{5})^{n+1})}{((\bruch{1+\wurzel{5}}{5})^{n}-(\bruch{1-\wurzel{5}}{5})^{n})}[/mm]

[ok] Und nun klammere in Zähler und Nenner den Term [mm] $\left(\bruch{1+\wurzel{5}}{5}-\bruch{1-\wurzel{5}}{5}\right)$ [/mm] aus
(Stichwort: MBPolynomdivision).


Bedenke, dass gilt:
[mm] $$a^{n+1}-b^{n+1} [/mm] \ = \ [mm] (a-b)*\left(a^{n}+a^{n-1}*b+a^{n-2}*b^2+...+a*b^{n-1}+b^{n}\right)$$ [/mm]

Gruß vom
Roadrunner


Bezug
                                                
Bezug
Fibonacci-Zahlen, Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:07 Mi 19.05.2010
Autor: Calculu

Ok, schonmal vielen Dank. Ich muss gleich arbeiten gehen. Meld mich später wieder.

Viele Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de